Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 034, 20 pages      arXiv:2110.10958      https://doi.org/10.3842/SIGMA.2022.034

Witten-Reshetikhin-Turaev Invariants, Homological Blocks, and Quantum Modular Forms for Unimodular Plumbing H-Graphs

Akihito Mori and Yuya Murakami
Mathematical Institute, Tohoku University, 6-3, Aoba, Aramaki, Aoba-Ku,Sendai 980-8578, Japan

Received November 23, 2021, in final form April 28, 2022; Published online May 07, 2022

Abstract
Gukov-Pei-Putrov-Vafa constructed $ q $-series invariants called homological blocks in a physical way in order to categorify Witten-Reshetikhin-Turaev (WRT) invariants and conjectured that radial limits of homological blocks are WRT invariants. In this paper, we prove their conjecture for unimodular H-graphs. As a consequence, it turns out that the WRT invariants of H-graphs yield quantum modular forms of depth two and of weight one with the quantum set $ \mathbb{Q} $. In the course of the proof of our main theorem, we first write the invariants as finite sums of rational functions. We second carry out a systematic study of weighted Gauss sums in order to give new vanishing results for them. Combining these results, we finally prove that the above conjecture holds for H-graphs.

Key words: quantum invariants; Witten-Reshetikhin-Turaev invariants; homological blocks; quantum modular forms; plumbed manifolds; false theta funcitons; Gauss sums.

pdf (473 kb)   tex (24 kb)  

References

  1. Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of Seifert fibered homology spheres, J. Lond. Math. Soc. 105 (2022), 709-764, arXiv:1811.05376.
  2. Bringmann K., Kaszian J., Milas A., Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak{sl}_3$ false theta functions, Res. Math. Sci. 6 (2019), 20, 41 pages, arXiv:1704.06891.
  3. Bringmann K., Mahlburg K., Milas A., Higher depth quantum modular forms and plumbed 3-manifolds, Lett. Math. Phys. 110 (2020), 2675-2702, arXiv:1906.10722.
  4. Bringmann K., Milas A., $\mathcal W$-algebras, false theta functions and quantum modular forms, I, Int. Math. Res. Not. 2015 (2015), 11351-11387.
  5. Cheng M.C., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
  6. Chun S., A resurgence analysis of the ${\rm SU}(2)$ Chern-Simons partition functions on a Brieskorn homology sphere $\Sigma(2,5,7)$, arXiv:1701.03528.
  7. Deloup F., Turaev V., On reciprocity, J. Pure Appl. Algebra 208 (2007), 153-158, arXiv:math.AC/0512050.
  8. Fuji H., Iwaki K., Murakami H., Terashima Y., Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds, Comm. Math. Phys. 386 (2021), 225-251, arXiv:2007.15872.
  9. Gukov S., Marino M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
  10. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  11. Hikami K., On the quantum invariant for the Brieskorn homology spheres, Internat. J. Math. 16 (2005), 661-685, arXiv:math-ph/0405028.
  12. Hikami K., Quantum invariant, modular form, and lattice points, Int. Math. Res. Not. 2005 (2005), 121-154, arXiv:math-ph/0409016.
  13. Hikami K., Quantum invariants, modular forms, and lattice points. II, J. Math. Phys. 47 (2006), 102301, 32 pages, arXiv:math.QA/0604091.
  14. Hikami K., On the quantum invariants for the spherical Seifert manifolds, Comm. Math. Phys. 268 (2006), 285-319, arXiv:math-ph/0504082.
  15. Lawrence R., Rozansky L., Witten-Reshetikhin-Turaev invariants of Seifert manifolds, Comm. Math. Phys. 205 (1999), 287-314.
  16. Lawrence R., Zagier D., Modular forms and quantum invariants of $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
  17. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  18. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, De Gruyter, Berlin, 2016.
  19. Wu D.H., Resurgent analysis of $\rm SU(2)$ Chern-Simons partition function on Brieskorn spheres $\Sigma(2, 3, 6n + 5)$, J. High Energy Phys. 2021 (2021), no. 2, 008, 18 pages, arXiv:2010.13736.
  20. Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 659-675.

Previous article  Next article  Contents of Volume 18 (2022)