|
SIGMA 18 (2022), 027, 13 pages arXiv:2201.04717
https://doi.org/10.3842/SIGMA.2022.027
Contribution to the Special Issue on Twistors from Geometry to Physics in honor of Roger Penrose
Twistor Theory of Dancing Paths
Maciej Dunajski
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
Received January 14, 2022, in final form March 28, 2022; Published online March 31, 2022
Abstract
Given a path geometry on a surface $\mathcal{U}$, we construct a causal structure on a four-manifold which is the configuration space of non-incident pairs (point, path) on $\mathcal{U}$. This causal structure corresponds to a conformal structure if and only if $\mathcal{U}$ is a real projective plane, and the paths are lines. We give the example of the causal structure given by a symmetric sextic, which corresponds on an ${\rm SL}(2,{\mathbb R})$-invariant projective structure where the paths are ellipses of area $\pi$ centred at the origin. We shall also discuss a causal structure on a seven-dimensional manifold corresponding to non-incident pairs (point, conic) on a projective plane.
Key words: path geometry; twistor theory; causal structures.
pdf (1084 kb)
tex (719 kb)
References
- Atiyah M., Dunajski M., Mason L.J., Twistor theory at fifty: from contour integrals to twistor strings, Proc. A 473 (2017), 20170530, 33 pages, arXiv:1704.07464.
- Atiyah M.F., Hitchin N.J., Singer I.M., Self-duality in four-dimensional Riemannian geometry, Proc. A 362 (1978), 425-461.
- Bor G., Hernández Lamoneda L., Nurowski P., The dancing metric, $G_2$-symmetry and projective rolling, Trans. Amer. Math. Soc. 370 (2018), 4433-4481.
- Bryant R., Élie Cartan and geometric duality, in Conférences données à l'Institut Élie Cartan, Institut Élie Cartan, Université de Nancy, 1999, 5-20.
- Bryant R., Dunajski M., Eastwood M., Metrisability of two-dimensional projective structures, J. Differential Geom. 83 (2009), 465-499, arXiv:0801.0300.
- Cartan E., Les espaces généralises et l'intégration de certaines classes d'équations différentielles, C. R. Acad. Sci. Paris 206 (1938), 1689-1693.
- Casey S., Dunajski M., Tod P., Twistor geometry of a pair of second order ODEs, Comm. Math. Phys. 321 (2013), 681-701, arXiv:1203.4158.
- Dunajski M., The nonlinear graviton as an integrable system, Ph.D. Thesis, Oxford University, 1998.
- Dunajski M., Mettler T., Gauge theory on projective surfaces and anti-self-dual Einstein metrics in dimension four, J. Geom. Anal. 28 (2018), 2780-2811, arXiv:1509.04276.
- Grossman D.A., Torsion-free path geometries and integrable second order ODE systems, Selecta Math. (N.S.) 6 (2000), 399-442.
- Holland J., Sparling G., Causal geometries and third-order ordinary differential equations, arXiv:1001.0202.
- Holland J., Sparling G., Causal geometries, null geodesics, and gravity, arXiv:1106.5254.
- Kryński W., Makhmali O., The Cayley cubic and differential equations, J. Geom. Anal. 31 (2021), 6219-6273, arXiv:1901.00958.
- Liouville R., Mémoire sur les invariants de certaines équations différentielles et sur leurs applications, J. l'Éc. Polit. 59 (1889), 7-76.
- Makhmali O., Differential geometric aspects of causal structures, Ph.D. Thesis, McGill University, 2017.
- Mason L.J., Woodhouse N.M.J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs, New Series, Vol. 15, The Clarendon Press, Oxford University Press, New York, 1996.
- Penrose R., Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), 31-52.
- Tresse A., Détermination des invariants ponctuels de l'équation différentielle ordinaire de second ordre $y'' = \omega(x,y,y')$, Hirzel, Leipzig, 1896.
- Ward R.S., Self-dual space-times with cosmological constant, Comm. Math. Phys. 78 (1980), 1-17.
- Ward R.S., Integrable and solvable systems, and relations among them, Philos. Trans. Roy. Soc. London Ser. A 315 (1985), 451-457.
|
|