|
SIGMA 18 (2022), 015, 22 pages arXiv:2107.04653
https://doi.org/10.3842/SIGMA.2022.015
An Atiyah Sequence for Noncommutative Principal Bundles
Kay Schwieger a and Stefan Wagner b
a) iteratec GmbH, Zettachring 6, 70567 Stuttgart, Germany
b) Blekinge Tekniska Högskola, SE-371 79 Karlskrona, Sweden
Received July 26, 2021, in final form February 21, 2022; Published online March 07, 2022
Abstract
We present a derivation-based Atiyah sequence for noncommutative principal bundles. Along the way we treat the problem of deciding when a given $^*$-automorphism on the quantum base space lifts to a $^*$-automorphism on the quantum total space that commutes with the underlying structure group.
Key words: Atiyah sequence; noncommutative principal bundle; freeness; factor system.
pdf (499 kb)
tex (35 kb)
References
- Arnlind J., Tiger Norkvist A., Noncommutative minimal embeddings and morphisms of pseudo-Riemannian calculi, J. Geom. Phys. 159 (2021), 103898, 17 pages, arXiv:1906.03885.
- Arnlind J., Wilson M., On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere, J. Geom. Phys. 111 (2017), 126-141, arXiv:1604.01159.
- Arnlind J., Wilson M., Riemannian curvature of the noncommutative 3-sphere, J. Noncommut. Geom. 11 (2017), 507-536, arXiv:1505.07330.
- Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
- Batty C.J.K., Carey A.L., Evans D.E., Robinson D.W., Extending derivations, Publ. Res. Inst. Math. Sci. 20 (1984), 119-130.
- Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum groups on unital $C^*$-algebras, Doc. Math. 22 (2017), 825-849, arXiv:1304.2812.
- Baum P.F., Hajac P.M., Matthes R., Szymanski W., Noncommutative geometry approach to principal and associated bundles, arXiv:math.DG/0701033.
- Beggs E.J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, Vol. 355, Springer, Cham, 2020.
- Brzeziński T., Hajac P.M., The Chern-Galois character, C. R. Math. Acad. Sci. Paris 338 (2004), 113-116, arXiv:math.KT/0306436.
- Ćaćić B., Mesland B., Gauge theory on noncommutative Riemannian principal bundles, Comm. Math. Phys. 388 (2021), 107-198, arXiv:1912.04179.
- Dalec'kiǐ J.L., Kreǐn M.G., Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, Vol. 43, Amer. Math. Soc., Providence, R.I., 1974.
- Dąbrowski L., Grosse H., Hajac P.M., Strong connections and Chern-Connes pairing in the Hopf-Galois theory, Comm. Math. Phys. 220 (2001), 301-331, arXiv:math.QA/9912239.
- Dąbrowski L., Sitarz A., Noncommutative circle bundles and new Dirac operators, Comm. Math. Phys. 318 (2013), 111-130, arXiv:1012.3055.
- Dąbrowski L., Sitarz A., Zucca A., Dirac operators on noncommutative principal circle bundles, Int. J. Geom. Methods Mod. Phys. 11 (2014), 1450012, 29 pages, arXiv:1305.6185.
- De Commer K., Yamashita M., A construction of finite index ${\rm C}^*$-algebra inclusions from free actions of compact quantum groups, Publ. Res. Inst. Math. Sci. 49 (2013), 709-735, arXiv:1201.4022.
- Dubois-Violette M., Dérivations et calcul différentiel non commutatif, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 403-408.
- Dubois-Violette M., Kriegl A., Maeda Y., Michor P.W., Smooth $*$-algebras, Progr. Theoret. Phys. Suppl. 144 (2001), 54-78, arXiv:math.QA/0106150.
- Echterhoff S., Nest R., Oyono-Oyono H., Principal non-commutative torus bundles, Proc. Lond. Math. Soc. 99 (2009), 1-31, arXiv:0810.0111.
- Ellwood D.A., A new characterisation of principal actions, J. Funct. Anal. 173 (2000), 49-60.
- Forsyth I., Rennie A., Factorisation of equivariant spectral triples in unbounded $KK$-theory, J. Aust. Math. Soc. 107 (2019), 145-180, arXiv:1505.02863.
- Hannabuss K.C., Mathai V., Noncommutative principal torus bundles via parametrised strict deformation quantization, in Superstrings, Geometry, Topology, and $C^\ast$-Algebras, Proc. Sympos. Pure Math., Vol. 81, Amer. Math. Soc., Providence, RI, 2010, 133-147, arXiv:0911.1886.
- Iochum B., Masson T., Crossed product extensions of spectral triples, J. Noncommut. Geom. 10 (2016), 65-133, arXiv:1406.4642.
- Ivankov P., Quantization of noncompact coverings, arXiv:1702.07918.
- Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996.
- Landi G., van Suijlekom W., Principal fibrations from noncommutative spheres, Comm. Math. Phys. 260 (2005), 203-225, arXiv:math.QA/0410077.
- Lecomte P.B.A., Sur la suite exacte canonique associée à un fibré principal, Bull. Soc. Math. France 113 (1985), 259-271.
- Mac Lane S., Homology, Classics in Mathematics, Springer-Verlag, Berlin - Heidelberg, 1995.
- Meir E., Hopf cocycle deformations and invariant theory, Math. Z. 294 (2020), 1355-1395, arXiv:1804.00289.
- Neeb K.-H., Lie group extensions associated to projective modules of continuous inverse algebras, Arch. Math. (Brno) 44 (2008), 465-489, arXiv:0802.2993.
- Neshveyev S., Duality theory for nonergodic actions, Münster J. Math. 7 (2014), 413-437, arXiv:1303.6207.
- Phillips N.C., Equivariant $K$-theory and freeness of group actions on $C^*$-algebras, Lecture Notes in Math., Vol. 1274, Springer-Verlag, Berlin, 1987.
- Rieffel M.A., Proper actions of groups on $C^*$-algebras, in Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., Vol. 84, Birkhäuser Boston, Boston, MA, 1990, 141-182.
- Rieffel M.A., A global view of equivariant vector bundles and Dirac operators on some compact homogeneous spaces, in Group Representations, Ergodic Theory, and Mathematical Physics: a Tribute to George W. Mackey, Contemp. Math., Vol. 449, Amer. Math. Soc., Providence, RI, 2008, 399-415, arXiv:math.DG/0703496.
- Schwieger K., Wagner S., Part I, Free actions of compact Abelian groups on ${\rm C}^*$-algebras, Adv. Math. 317 (2017), 224-266, arXiv:1505.00688.
- Schwieger K., Wagner S., Part II, Free actions of compact groups on $\rm C^*$-algebras, J. Noncommut. Geom. 11 (2017), 641-668, arXiv:1508.07904.
- Schwieger K., Wagner S., Part III, Free actions of compact quantum groups on ${\rm C}^*$-algebras, SIGMA 13 (2017), 062, 19 pages, arXiv:1701.05895.
- Schwieger K., Wagner S., Noncommutative coverings of quantum tori, Math. Scand. 126 (2020), 99-116, arXiv:1710.09396.
- Schwieger K., Wagner S., Lifting spectral triples to noncommutative principal bundles, Adv. Math. 396 (2022), 108160, 36 pages, arXiv:2012.15364.
- Wagner S., Free group actions from the viewpoint of dynamical systems, Münster J. Math. 5 (2012), 73-97, arXiv:1111.5562.
- Wagner S., Secondary characteristic classes of Lie algebra extensions, Bull. Soc. Math. France 147 (2019), 443-453, arXiv:1707.08412.
- Wahl C., Index theory for actions of compact Lie groups on $C^*$-algebras, J. Operator Theory 63 (2010), 217-242, arXiv:0707.3207.
|
|