|
SIGMA 18 (2022), 009, 28 pages arXiv:2105.12652
https://doi.org/10.3842/SIGMA.2022.009
Twisted Traces and Positive Forms on Generalized $q$-Weyl Algebras
Daniil Klyuev
Department of Mathematics, Massachusetts Institute of Technology, USA
Received May 27, 2021, in final form January 17, 2022; Published online January 30, 2022
Abstract
Let ${\mathcal A}$ be a generalized $q$-Weyl algebra, it is generated by $u$, $v$, $Z$, $Z^{-1}$ with relations $ZuZ^{-1}=q^2u$, $ZvZ^{-1}=q^{-2}v$, $uv=P\big(q^{-1}Z\big)$, $vu=P(qZ)$, where $P$ is a Laurent polynomial. A Hermitian form $(\cdot,\cdot)$ on ${\mathcal A}$ is called invariant if $(Za,b)=\big(a,bZ^{-1}\big)$, $(ua,b)=(a,sbv)$, $(va,b)=\big(a,s^{-1}bu\big)$ for some $s\in {\mathbb C}$ with $|s|=1$ and all $a,b\in {\mathcal A}$. In this paper we classify positive definite invariant Hermitian forms on generalized $q$-Weyl algebras.
Key words: quantization; trace; inner product; star-product.
pdf (548 kb)
tex (31 kb)
References
- Bavula V.V., Generalized Weyl algebras and their representations, St. Petersburg Math. J. 4 (1993), 71-92.
- Beem C., Peelaers W., Rastelli L., Deformation quantization and superconformal symmetry in three dimensions, Comm. Math. Phys. 354 (2017), 345-392, arXiv:1601.05378.
- Dedushenko M., Fan Y., Pufu S.S., Yacoby R., Coulomb branch operators and mirror symmetry in three dimensions, J. High Energy Phys. 2018 (2018), no. 4, 037, 111 pages, arXiv:1712.09384.
- Dedushenko M., Gaiotto D., Algebras, traces, and boundary correlators in ${\mathcal N}=4$ SYM, J. High Energy Phys. 2021 (2021), no. 12, 050, 62 pages, arXiv:2009.11197.
- Dedushenko M., Pufu S.S., Yacoby R., A one-dimensional theory for Higgs branch operators, J. High Energy Phys. 2018 (2018), no. 3, 138, 83 pages, arXiv:1610.00740.
- Etingof P., Klyuev D., Rains E., Stryker D., Twisted traces and positive forms on quantized Kleinian singularities of type A, SIGMA 17 (2021), 029, 31 pages, arXiv:2009.09437.
- Etingof P., Stryker D., Short star-products for filtered quantizations, I, SIGMA 16 (2020), 014, 28 pages, arXiv:1909.13588.
- Klyuev D., On unitarizable Harish-Chandra bimodules for deformations of Kleinian singularities, arXiv:2003.11508.
- Klyuev D., Generalized star-products and unitarizability of bimodules over deformations and $q$-deformations of Kleinian singularities of type A, in preparation.
- Mumford D., Tata lectures on theta. I, Progress in Mathematics, Vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983.
- Pusz W., Irreducible unitary representations of quantum Lorentz group, Comm. Math. Phys. 152 (1993), 591-626.
|
|