Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 113, 11 pages      arXiv:2110.07042      https://doi.org/10.3842/SIGMA.2021.113

Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP$(2j)$ and Multi-Species IRW

Zhengye Zhou
Department of Mathematics, Texas A&M University, College Station, TX 77840, USA

Received October 16, 2021, in final form December 24, 2021; Published online December 26, 2021

Abstract
We obtain orthogonal polynomial self-duality functions for multi-species version of the symmetric exclusion process (SEP$(2j)$) and the independent random walker process (IRW) on a finite undirected graph. In each process, we have $n$>$1$ species of particles. In addition, we allow up to $2j$ particles to occupy each site in the multi-species SEP$(2j)$. The duality functions for the multi-species SEP$(2j)$ and the multi-species IRW come from unitary intertwiners between different $*$-representations of the special linear Lie algebra $\mathfrak{sl}_{n+1}$ and the Heisenberg Lie algebra $\mathfrak{h}_n$, respectively. The analysis leads to multivariate Krawtchouk polynomials as orthogonal duality functions for the multi-species SEP$(2j)$ and homogeneous products of Charlier polynomials as orthogonal duality functions for the multi-species IRW.

Key words: orthogonal duality; multi-species SEP$(2j)$; multi-species IRW.

pdf (416 kb)   tex (16 kb)  

References

  1. Ayala M., Carinci G., Redig F., Quantitative Boltzmann-Gibbs principles via orthogonal polynomial duality, J. Stat. Phys. 171 (2018), 980-999, arXiv:1712.08492.
  2. Ayala M., Carinci G., Redig F., Higher order fluctuation fields and orthogonal duality polynomials, Electron. J. Probab. 26 (2021), 27, 35 pages, arXiv:2004.08412.
  3. Borodin A., Corwin I., Sasamoto T., From duality to determinants for $q$-TASEP and ASEP, Ann. Probab. 42 (2014), 2314-2382, arXiv:1207.5035.
  4. Caputo P., On the spectral gap of the Kac walk and other binary collision processes, ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 205-222, arXiv:0807.3415.
  5. Carinci G., Franceschini C., Giardinà C., Groenevelt W., Redig F., Orthogonal dualities of Markov processes and unitary symmetries, SIGMA 15 (2019), 053, 27 pages, arXiv:1812.08553.
  6. Chen J.P., Sau F., Higher-order hydrodynamics and equilibrium fluctuations of interacting particle systems, Markov Process. Related Fields 27 (2021), 339-380, arXiv:2008.13403.
  7. Corwin I., Shen H., Tsai L.-C., ${\rm ASEP}(q,j)$ converges to the KPZ equation, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), 995-1012, arXiv:1602.01908.
  8. Dermoune A., Heinrich P., Spectral gap for multicolor nearest-neighbor exclusion processes with site disorder, J. Stat. Phys. 131 (2008), 117-125.
  9. Franceschini C., Giardinà C., Stochastic duality and orthogonal polynomials, arXiv:1701.09115.
  10. Giardinà C., Kurchan J., Redig F., Vafayi K., Duality and hidden symmetries in interacting particle systems, J. Stat. Phys. 135 (2009), 25-55, arXiv:0810.1202.
  11. Griffiths R.C., Orthogonal polynomials on the multinomial distribution, Aust. J. Stat. 13 (1971), 27-35.
  12. Groenevelt W., Orthogonal stochastic duality functions from Lie algebra representations, J. Stat. Phys. 174 (2019), 97-119, arXiv:1709.05997.
  13. Iliev P., A Lie-theoretic interpretation of multivariate hypergeometric polynomials, Compos. Math. 148 (2012), 991-1002, arXiv:1101.1683.
  14. Kuan J., A multi-species ${\rm ASEP}(q,j)$ and $q$-TAZRP with stochastic duality, Int. Math. Res. Not. 2018 (2018), 5378-5416, arXiv:1605.00691.
  15. Kuan J., Stochastic fusion of interacting particle systems and duality functions, arXiv:1908.02359.
  16. Redig F., Sau F., Factorized duality, stationary product measures and generating functions, J. Stat. Phys. 172 (2018), 980-1008, arXiv:1702.07237.
  17. Zhou Z., Hydrodynamic limit for a $d$-dimensional open symmetric exclusion process, Electron. Commun. Probab. 25 (2020), 76, 8 pages, arXiv:2004.14279.

Previous article  Contents of Volume 17 (2021)