|
SIGMA 17 (2021), 110, 15 pages arXiv:2002.08620
https://doi.org/10.3842/SIGMA.2021.110
A Composite Order Generalization of Modular Moonshine
Satoru Urano
Division of Mathematics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571 Japan
Received March 31, 2021, in final form December 21, 2021; Published online December 24, 2021
Abstract
We introduce a generalization of Brauer character to allow arbitrary finite length modules over discrete valuation rings. We show that the generalized super Brauer character of Tate cohomology is a linear combination of trace functions. Using this result, we find a counterexample to a conjecture of Borcherds about vanishing of Tate cohomology for Fricke elements of the Monster.
Key words: moonshine; modular function; Brauer character; vertex operator algebra.
pdf (381 kb)
tex (17 kb)
References
- Borcherds R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444.
- Borcherds R.E., Modular moonshine. III, Duke Math. J. 93 (1998), 129-154, arXiv:math.AG/9801101.
- Borcherds R.E., Ryba A.J.E., Modular Moonshine. II, Duke Math. J. 83 (1996), 435-459.
- Carnahan S., A self-dual integral form of the Moonshine module, SIGMA 15 (2019), 030, 36 pages, arXiv:1710.00737.
- Cassels J.W.S., Fröhlich A. (Editors), Algebraic number theory, Academic Press, London, Thompson Book Co., Inc., Washington, D.C., 1967.
- Conway J.H., Norton S.P., Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339.
- Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.
|
|