Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 110, 15 pages      arXiv:2002.08620      https://doi.org/10.3842/SIGMA.2021.110

A Composite Order Generalization of Modular Moonshine

Satoru Urano
Division of Mathematics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571 Japan

Received March 31, 2021, in final form December 21, 2021; Published online December 24, 2021

Abstract
We introduce a generalization of Brauer character to allow arbitrary finite length modules over discrete valuation rings. We show that the generalized super Brauer character of Tate cohomology is a linear combination of trace functions. Using this result, we find a counterexample to a conjecture of Borcherds about vanishing of Tate cohomology for Fricke elements of the Monster.

Key words: moonshine; modular function; Brauer character; vertex operator algebra.

pdf (381 kb)   tex (17 kb)  

References

  1. Borcherds R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444.
  2. Borcherds R.E., Modular moonshine. III, Duke Math. J. 93 (1998), 129-154, arXiv:math.AG/9801101.
  3. Borcherds R.E., Ryba A.J.E., Modular Moonshine. II, Duke Math. J. 83 (1996), 435-459.
  4. Carnahan S., A self-dual integral form of the Moonshine module, SIGMA 15 (2019), 030, 36 pages, arXiv:1710.00737.
  5. Cassels J.W.S., Fröhlich A. (Editors), Algebraic number theory, Academic Press, London, Thompson Book Co., Inc., Washington, D.C., 1967.
  6. Conway J.H., Norton S.P., Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339.
  7. Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.

Previous article  Next article  Contents of Volume 17 (2021)