Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 109, 30 pages      arXiv:2107.11455      https://doi.org/10.3842/SIGMA.2021.109

Scalar Curvatures of Invariant Almost Hermitian Structures on Generalized Flag Manifolds

Lino Grama a and Ailton R. Oliveira b
a) IMECC - Universidade Estadual de Campinas (Unicamp), Departamento de Matemática, Rua Sérgio Buarque de Holanda,651, Cidade Universitária Zeferino Vaz. 13083-859 Campinas - SP, Brazil
b) UEMS - Universidade Estadual de Mato Grosso do Sul - MS, Cidade Universitária de Dourados, Rodovia Itahum, Km 12 s/n - Jardim Aeroporto, Dourados - MS, Brazil

Received August 02, 2021, in final form December 11, 2021; Published online December 21, 2021

Abstract
In this paper we study invariant almost Hermitian geometry on generalized flag manifolds. We will focus on providing examples of Kähler like scalar curvature metric, that is, almost Hermitian structures $(g,J)$ satisfying $s=2s_{\rm C}$, where $s$ is Riemannian scalar curvature and $s_{\rm C}$ is the Chern scalar curvature.

Key words: curvature of almost Hermitian structures; generalized flag manifolds; Kähler like scalar curvature.

pdf (543 kb)   tex (27 kb)  

References

  1. Alekseevsky D.V., Flag manifolds, Zb. Rad. Mat. Inst. Beograd. (N.S.) 6 (1997), 3-35.
  2. Apostolov V., Drăghici T., Almost Kähler 4-manifolds with $J$-invariant Ricci tensor and special Weyl tensor, Q. J. Math. 51 (2000), 275-294, arXiv:math.DG/9911196.
  3. Arvanitoyeorgos A., Geometry of flag manifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), 957-974.
  4. Arvanitoyeorgos A., Chrysikos I., Invariant Einstein metrics on generalized flag manifolds with two isotropy summands, J. Aust. Math. Soc. 90 (2011), 237-251, arXiv:0902.1826.
  5. Arvanitoyeorgos A., Chrysikos I., Sakane Y., Homogeneous Einstein metrics on $G_2/T$, Proc. Amer. Math. Soc. 141 (2013), 2485-2499, arXiv:1010.3661.
  6. Besse A.L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 10, Springer-Verlag, Berlin, 1987.
  7. Borel A., Hirzebruch F., Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538.
  8. Chern S.-S., Characteristic classes of Hermitian manifolds, Ann. of Math. 47 (1946), 85-121.
  9. Dabkowski M.G., Lock M.T., An equivalence of scalar curvatures on Hermitian manifolds, J. Geom. Anal. 27 (2017), 239-270, arXiv:1505.02726.
  10. Friedrich T., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), 303-335, arXiv:math.DG/0102142.
  11. Fu J., Zhou X., Twistor geometry of Hermitian surfaces induced by canonical connections, arXiv:1803.03894.
  12. Fu J., Zhou X., Scalar curvatures in almost Hermitian geometry and some applications, arXiv:1901.10130.
  13. Gauduchon P., La $1$-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518.
  14. Gauduchon P., Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B 11 (1997), 257-288.
  15. Grama L., Lima K.N.S., Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on maximal flag manifolds, Differential Geom. Appl. 73 (2020), 101684, 41 pages, arXiv:1911.06094.
  16. Gray A., Hervella L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
  17. Ivanov S., Papadopoulos G., Vanishing theorems and string backgrounds, Classical Quantum Gravity 18 (2001), 1089-1110, arXiv:math.DG/0010038.
  18. Lejmi M., Upmeier M., Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry, Comm. Anal. Geom. 28 (2020), 1603-1645, arXiv:1703.01323.
  19. Liu K., Yang X., Ricci curvatures on Hermitian manifolds, Trans. Amer. Math. Soc. 369 (2017), 5157-5196, arXiv:1404.2481.
  20. San Martin L.A.B., de Cássia de J. Silva R., Invariant nearly-Kähler structures, Geom. Dedicata 121 (2006), 143-154.
  21. San Martin L.A.B., Negreiros C.J.C., Invariant almost Hermitian structures on flag manifolds, Adv. Math. 178 (2003), 277-310.
  22. Tricerri F., Vanhecke L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-397.
  23. Wolf J.A., Gray A., Homogeneous spaces defined by Lie group automorphisms. II, J. Differential Geometry 2 (1968), 115-159.

Previous article  Next article  Contents of Volume 17 (2021)