Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 108, 10 pages      arXiv:2101.04332      https://doi.org/10.3842/SIGMA.2021.108

The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System

Dmitry K. Demskoi
School of Computing, Mathematics and Engineering, Charles Sturt University,NSW 2678, Australia

Received June 30, 2021, in final form December 13, 2021; Published online December 21, 2021

Abstract
We treat the lattice sine-Gordon equation and two of its generalised symmetries as a compatible system. Elimination of shifts from the two symmetries of the lattice sine-Gordon equation yields an integrable NLS-type system. An auto-Bäcklund transformation and a superposition formula for the NLS-type system is obtained by elimination of shifts from the lattice sine-Gordon equation and its down-shifted version. We use the obtained formulae to calculate a superposition of two and three elementary solutions.

Key words: quad-equation; NLS-type system; auto-Bäcklund transformation.

pdf (357 kb)   tex (54 kb)  

References

  1. Adler V.E., Integrable seven-point discrete equations and second-order evolution chains, Theoret. and Math. Phys. 195 (2018), 513-528, arXiv:1705.10636.
  2. Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
  3. Adler V.E., Startsev S.Ya., On discrete analogues of the Liouville equation, Theoret. and Math. Phys. 121 (1999), 1484-1495, arXiv:solv-int/9902016.
  4. Cherdantsev I.Y., Yamilov R.I., Master symmetries for differential-difference equations of the Volterra type, Phys. D 87 (1995), 140-144.
  5. Demskoi D.K., Quad-equations and auto-Bäcklund transformations of NLS-type systems, J. Phys. A: Math. Theor. 47 (2014), 165204, 8 pages, arXiv:1310.5769.
  6. Demskoi D.K., Tran D.T., Darboux integrability of determinant and equations for principal minors, Nonlinearity 29 (2016), 1973-1991, arXiv:1411.5758.
  7. Fordy A.P., Xenitidis P., $\mathbb Z_N$ graded discrete Lax pairs and integrable difference equations, J. Phys. A: Math. Theor. 50 (2017), 165205, 30 pages, arXiv:1411.6059.
  8. Fordy A.P., Xenitidis P., Symmetries of $\mathbb Z_N$ graded discrete integrable systems, J. Phys. A: Math. Theor. 53 (2020), 235201, 30 pages.
  9. Hirota R., Nonlinear partial difference equations. III. Discrete sine-Gordon equation, J. Phys. Soc. Japan 43 (1977), 2079-2086.
  10. Hirota R., Nonlinear partial difference equations. V. Nonlinear equations reducible to linear equations, J. Phys. Soc. Japan 46 (1979), 312-319.
  11. Levi D., Nonlinear differential-difference equations as Bäcklund transformations, J. Phys. A: Math. Gen. 14 (1981), 1083-1098.
  12. Mikhailov A.V., Shabat A.B., Yamilov R.I., Extension of the module of invertible transformations. Classification of integrable systems, Comm. Math. Phys. 115 (1988), 1-19.
  13. Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
  14. Shabat A.B., Yamilov R.I., Symmetries of nonlinear lattices, Leningrad Math. J. 2 (1991), 377-400.
  15. Tremblay S., Grammaticos B., Ramani A., Integrable lattice equations and their growth properties, Phys. Lett. A 278 (2001), 319-324, arXiv:0709.3095.
  16. Weiss J., The Painlevé property for partial differential equations. II. Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24 (1983), 1405-1413.
  17. Yamilov R., Symmetries as integrability criteria for differential difference equations, J. Phys. A: Math. Gen. 39 (2006), R541-R623.

Previous article  Next article  Contents of Volume 17 (2021)