|
SIGMA 17 (2021), 108, 10 pages arXiv:2101.04332
https://doi.org/10.3842/SIGMA.2021.108
The Lattice Sine-Gordon Equation as a Superposition Formula for an NLS-Type System
Dmitry K. Demskoi
School of Computing, Mathematics and Engineering, Charles Sturt University,NSW 2678, Australia
Received June 30, 2021, in final form December 13, 2021; Published online December 21, 2021
Abstract
We treat the lattice sine-Gordon equation and two of its generalised symmetries as a compatible system. Elimination of shifts from the two symmetries of the lattice sine-Gordon equation yields an integrable NLS-type system. An auto-Bäcklund transformation and a superposition formula for the NLS-type system is obtained by elimination of shifts from the lattice sine-Gordon equation and its down-shifted version. We use the obtained formulae to calculate a superposition of two and three elementary solutions.
Key words: quad-equation; NLS-type system; auto-Bäcklund transformation.
pdf (357 kb)
tex (54 kb)
References
- Adler V.E., Integrable seven-point discrete equations and second-order evolution chains, Theoret. and Math. Phys. 195 (2018), 513-528, arXiv:1705.10636.
- Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
- Adler V.E., Startsev S.Ya., On discrete analogues of the Liouville equation, Theoret. and Math. Phys. 121 (1999), 1484-1495, arXiv:solv-int/9902016.
- Cherdantsev I.Y., Yamilov R.I., Master symmetries for differential-difference equations of the Volterra type, Phys. D 87 (1995), 140-144.
- Demskoi D.K., Quad-equations and auto-Bäcklund transformations of NLS-type systems, J. Phys. A: Math. Theor. 47 (2014), 165204, 8 pages, arXiv:1310.5769.
- Demskoi D.K., Tran D.T., Darboux integrability of determinant and equations for principal minors, Nonlinearity 29 (2016), 1973-1991, arXiv:1411.5758.
- Fordy A.P., Xenitidis P., $\mathbb Z_N$ graded discrete Lax pairs and integrable difference equations, J. Phys. A: Math. Theor. 50 (2017), 165205, 30 pages, arXiv:1411.6059.
- Fordy A.P., Xenitidis P., Symmetries of $\mathbb Z_N$ graded discrete integrable systems, J. Phys. A: Math. Theor. 53 (2020), 235201, 30 pages.
- Hirota R., Nonlinear partial difference equations. III. Discrete sine-Gordon equation, J. Phys. Soc. Japan 43 (1977), 2079-2086.
- Hirota R., Nonlinear partial difference equations. V. Nonlinear equations reducible to linear equations, J. Phys. Soc. Japan 46 (1979), 312-319.
- Levi D., Nonlinear differential-difference equations as Bäcklund transformations, J. Phys. A: Math. Gen. 14 (1981), 1083-1098.
- Mikhailov A.V., Shabat A.B., Yamilov R.I., Extension of the module of invertible transformations. Classification of integrable systems, Comm. Math. Phys. 115 (1988), 1-19.
- Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
- Shabat A.B., Yamilov R.I., Symmetries of nonlinear lattices, Leningrad Math. J. 2 (1991), 377-400.
- Tremblay S., Grammaticos B., Ramani A., Integrable lattice equations and their growth properties, Phys. Lett. A 278 (2001), 319-324, arXiv:0709.3095.
- Weiss J., The Painlevé property for partial differential equations. II. Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24 (1983), 1405-1413.
- Yamilov R., Symmetries as integrability criteria for differential difference equations, J. Phys. A: Math. Gen. 39 (2006), R541-R623.
|
|