Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 106, 35 pages      arXiv:2112.04733      https://doi.org/10.3842/SIGMA.2021.106
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan

How to Draw a Correlation Function

Nikolay Bogoliubov and Cyril Malyshev
St.-Petersburg Department of Steklov Institute of Mathematics, RAS, Fontanka 27, St.-Petersburg, Russia

Received June 05, 2021, in final form December 02, 2021; Published online December 09, 2021

Abstract
We discuss connection between the $XX0$ Heisenberg spin chain and some aspects of enumerative combinatorics. The representation of the Bethe wave functions via the Schur functions allows to apply the theory of symmetric functions to the calculation of the correlation functions. We provide a combinatorial derivation of the dynamical auto-correlation functions and visualise them in terms of nests of self-avoiding lattice paths. Asymptotics of the auto-correlation functions are obtained in the double scaling limit provided that the evolution parameter is large.

Key words: $XX0$ Heisenberg spin chain; correlation functions; enumerative combinatorics.

pdf (2964 kb)   tex (2369 kb)  

References

  1. Barnes E.W., The theory of the $G$-function, Quart. J. Math. 31 (1900), 264-314.
  2. Bogoliubov N.M., $XX0$ Heisenberg chain and random walks, J. Math. Sci. 138 (2006), 5636-5643.
  3. Bogoliubov N.M., Malyshev C., Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks, Nuclear Phys. B 879 (2014), 268-291, arXiv:1401.7624.
  4. Bogoliubov N.M., Malyshev C., Integrable models and combinatorics, Russian Math. Surveys 70 (2015), 789-856.
  5. Bogoliubov N.M., Malyshev C., The phase model and the norm-trace generating function of plane partitions, J. Stat. Mech. Theory Exp. 2018 (2018), 083101, 13 pages.
  6. Bogoliubov N.M., Malyshev C., Heisenberg $XX0$ chain and random walks on a ring, Zap. Nauchn. Sem. POMI 494 (2020), 48-63.
  7. Borodin A., Gorin V., Rains E.M., $q$-distributions on boxed plane partitions, Selecta Math. (N.S.) 16 (2010), 731-789, arXiv:0905.0679.
  8. Bressoud D.M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Cambridge University Press, Cambridge, 1999.
  9. Bufetov A., Gorin V., Fluctuations of particle systems determined by Schur generating functions, Adv. Math. 338 (2018), 702-781, arXiv:1604.01110.
  10. Carlitz L., Some determinants of $q$-binomial coefficients, J. Reine Angew. Math. 226 (1967), 216-220.
  11. Colomo F., Izergin A.G., Korepin V.E., Tognetti V., Correlators in the Heisenberg $XX0$ chain as Fredholm determinants, Phys. Lett. A 169 (1992), 243-247.
  12. Dingle R.B., Asymptotic expansions: their derivation and interpretation, Academic Press, London - New York, 1973.
  13. Faddeev L.D., Quantum completely integrable models in field theory, in Mathematical Physics Reviews, Vol. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., Vol. 1, Harwood Academic, Chur, 1980, 107-155.
  14. Faddeev L.D., Takhtadzhyan L.A., Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model, J. Sov. Math. 24 (1984), 241-267.
  15. Faddeev L.D., Takhtajan L.A., What is the spin of a spin wave?, Phys. Lett. A 85 (1981), 375-377.
  16. Fisher M.E., Walks, walls, wetting, and melting, J. Stat. Phys. 34 (1984), 667-729.
  17. Forrester P.J., Exact solution of the lock step model of vicious walkers, J. Phys. A: Math. Gen. 23 (1990), 1259-1273.
  18. Forrester P.J., Exact results for vicious walker models of domain walls, J. Phys. A: Math. Gen. 24 (1991), 203-218.
  19. Franchini F., Its A.R., Korepin V.E., Takhtajan L.A., Spectrum of the density matrix of a large block of spins of the $XY$ model in one dimension, Quantum Inf. Process. 10 (2011), 325-341.
  20. Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997.
  21. Gessel I., Viennot G., Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985), 300-321.
  22. Gross D.J., Witten E., Possible third-order phase transition in the large-$N$ lattice gauge theory, Phys. Rev. D 21 (1980), 446-453.
  23. Guttmann A.J., Owczarek A.L., Viennot X.G., Vicious walkers and Young tableaux. I. Without walls, J. Phys. A: Math. Gen. 31 (1998), 8123-8135.
  24. Karlin S., McGregor J., Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164.
  25. Karlin S., McGregor J., Coincidence properties of birth and death processes, Pacific J. Math. 9 (1959), 1109-1140.
  26. Katori M., Tanemura H., Nonintersecting paths, noncolliding diffusion processes and representation theory, RIMS K=oky=uroku 1438 (2005), 83-102, arXiv:math.PR/0501218.
  27. Katori M., Tanemura H., Noncolliding Brownian motion and determinantal processes, J. Stat. Phys. 129 (2007), 1233-1277, arXiv:0705.2460.
  28. Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
  29. Krattenthaler C., Guttmann A.J., Viennot X.G., Vicious walkers, friendly walkers and Young tableaux. II. With a wall, J. Phys. A: Math. Gen. 33 (2000), 8835-8866, arXiv:cond-mat/0006367.
  30. Lieb E., Schultz T., Mattis D., Two soluble models of an antiferromagnetic chain, Ann. Physics 16 (1961), 407-466.
  31. Lindström B., On the vector representations of induced matroids, Bull. London Math. Soc. 5 (1973), 85-90.
  32. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  33. Mehta M.L., Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991.
  34. Okounkov A., Reshetikhin N., Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003), 581-603, arXiv:math.CO/0107056.
  35. Pérez-García D., Tierz M., Mapping between the Heisenberg $XX$ spin chain and low-energy QCD, Phys. Rev. X 4 (2014), 021050, 12 pages.
  36. Saeedian M., Zahabi A., Phase structure of $XX0$ spin chain and nonintersecting Brownian motion, J. Stat. Mech. Theory Exp. 2018 (2018), 013104, 36 pages, arXiv:1612.03463.
  37. Saeedian M., Zahabi A., Exact solvability and asymptotic aspects of generalized $XX0$ spin chains, Phys. A 549 (2020), 124406, 19 pages, arXiv:1709.02760.
  38. Santilli L., Tierz M., Phase transition in complex-time Loschmidt echo of short and long range spin chain, J. Stat. Mech. Theory Exp. 2020 (2020), 063102, 39 pages, arXiv:1902.06649.
  39. Sklyanin E.K., Takhtajan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  40. Stanley R.P., Enumerative combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, Vol. 49, Cambridge University Press, Cambridge, 1997.
  41. Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.
  42. Stembridge J.R., Multiplicity-free products of Schur functions, Ann. Comb. 5 (2001), 113-121.
  43. Takhtajan L.A., The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins, Phys. Lett. A 87 (1982), 479-482.
  44. Takhtajan L.A., Faddeev L.D., The quantum method for the inverse problem and the $XYZ$ Heisenberg model, Russian Math. Surveys 34 (1979), no. 5, 11-68.
  45. van Willigenburg S., Equality of Schur and skew Schur functions, Ann. Comb. 9 (2005), 355-362, arXiv:math.CO/0410044.
  46. Vershik A.M., Statistical mechanics of combinatorial partitions, and their limit shapes, Funct. Anal. Appl. 30 (1996), 90-105.

Previous article  Next article  Contents of Volume 17 (2021)