|
SIGMA 17 (2021), 100, 26 pages arXiv:2102.12383
https://doi.org/10.3842/SIGMA.2021.100
Contribution to the Special Issue on Algebraic Structures in Perturbative Quantum Field Theory in honor of Dirk Kreimer for his 60th birthday
$c_2$ Invariants of Hourglass Chains via Quadratic Denominator Reduction
Oliver Schnetz a and Karen Yeats b
a) Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 11, 91058, Erlangen, Germany
b) Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Received February 25, 2021, in final form November 02, 2021; Published online November 10, 2021
Abstract
We introduce families of four-regular graphs consisting of chains of hourglasses which are attached to a finite kernel. We prove a formula for the $c_2$ invariant of these hourglass chains which only depends on the kernel. For different kernels these hourglass chains typically give rise to different $c_2$ invariants. An exhaustive search for the $c_2$ invariants of hourglass chains with kernels that have a maximum of ten vertices provides Calabi-Yau manifolds with point-counts which match the Fourier coefficients of modular forms whose weights and levels are [4,8], [4,16], [6,4], and [9,4]. Assuming the completion conjecture, we show that no modular form of weight 2 and level $\leq1000$ corresponds to the $c_2$ of such hourglass chains. This provides further evidence in favour of the conjecture that curves are absent in $c_2$ invariants of $\phi^4$ quantum field theory.
Key words: $c_2$ invariant; denominator reduction; quadratic denominator reduction; Feynman period.
pdf (1041 kb)
tex (518 kb)
References
- Bloch S., Esnault H., Kreimer D., On motives associated to graph polynomials, Comm. Math. Phys. 267 (2006), 181-225, arXiv:math.AG/0510011.
- Borinsky M., Schnetz O., Graphical functions in even dimensions, arXiv:2105.05015.
- Broadhurst D.J., Kreimer D., Knots and numbers in $\phi^4$ theory to $7$ loops and beyond, Internat. J. Modern Phys. C 6 (1995), 519-524, arXiv:hep-ph/9504352.
- Brown F., On the periods of some Feynman integrals, arXiv:0910.0114.
- Brown F., The massless higher-loop two-point function, Comm. Math. Phys. 287 (2009), 925-958, arXiv:0804.1660.
- Brown F., Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. Number Theory Phys. 11 (2017), 453-556, arXiv:1512.06409.
- Brown F., Notes on motivic periods, Commun. Number Theory Phys. 11 (2017), 557-655, arXiv:1512.06410.
- Brown F., Doryn D., Framings for graph hypersurfaces, arXiv:1301.3056.
- Brown F., Schnetz O., A K3 in $\phi^4$, Duke Math. J. 161 (2012), 1817-1862, arXiv:1006.4064.
- Brown F., Schnetz O., Modular forms in quantum field theory, Commun. Number Theory Phys. 7 (2013), 293-325, arXiv:1304.5342.
- Brown F., Schnetz O., Yeats K., Properties of $c_2$ invariants of Feynman graphs, Adv. Theor. Math. Phys. 18 (2014), 323-362, arXiv:1203.0188.
- Brown F., Yeats K., Spanning forest polynomials and the transcendental weight of Feynman graphs, Comm. Math. Phys. 301 (2011), 357-382, arXiv:0910.5429.
- Chorney W., Yeats K., $c_2$ invariants of recursive families of graphs, Ann. Inst. Henri Poincaré D 6 (2019), 289-311, arXiv:1701.01208.
- Denham G., Schulze M., Walther U., Matroid connectivity and singularities of configuration hypersurfaces, Lett. Math. Phys. 111 (2021), 11, 67 pages, arXiv:1902.06507.
- Hu S., Schnetz O., Shaw J., Yeats K., Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant, Ann. Inst. Henri Poincaré D, to appear, arXiv:1812.08751.
- Itzykson C., Zuber J.B., Quantum field theory, International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York, 1980.
- Kompaniets M.V., Panzer E., Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents, Phys. Rev. D 96 (2017), 036016, 26 pages, arXiv:1705.06483.
- Lefschetz S., On the fixed point formula, Ann. of Math. 38 (1937), 819-822.
- McKay B.D., Piperno A., Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94-112, arXiv:1301.1493.
- Panzer E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Computer Phys. Comm. 188 (2015), 148-166, arXiv:1403.3385.
- Panzer E., Schnetz O., The Galois coaction on $\phi^4$ periods, Commun. Number Theory Phys. 11 (2017), 657-705, arXiv:1603.04289.
- Patterson E., On the singular structure of graph hypersurfaces, Commun. Number Theory Phys. 4 (2010), 659-708, arXiv:1004.5166.
- Rella C., An introduction to motivic Feynman integrals, SIGMA 17 (2021), 032, 56 pages, arXiv:2009.00426.
- Schnetz O., Quantum periods: a census of $\phi^4$-transcendentals, Commun. Number Theory Phys. 4 (2010), 1-47, arXiv:0801.2856.
- Schnetz O., Quantum field theory over $\mathbb F_q$, Electron. J. Combin. 18 (2011), 102, 23 pages, arXiv:0909.0905.
- Schnetz O., Numbers and functions in quantum field theory, Phys. Rev. D 97 (2018), 085018, 20 pages, arXiv:1606.08598.
- Schnetz O., Geometries in perturbative quantum field theory, Commun. Number Theory Phys. 15 (2021), 743-791, arXiv:1905.08083.
- Schnetz O., HyperlogProcedures, Version 0.5, 2021, Maple package available at https://www.math.fau.de/person/oliver-schnetz/.
- Yeats K., Some combinatorial interpretations in perturbative quantum field theory, in Feynman Amplitudes, Periods and Motives, Contemp. Math., Vol. 648, Amer. Math. Soc., Providence, RI, 2015, 261-289, arXiv:1302.0080.
- Yeats K., A few $c_2$ invariants of circulant graphs, Commun. Number Theory Phys. 10 (2016), 63-86, arXiv:1507.06974.
- Yeats K., A special case of completion invariance for the $c_2$ invariant of a graph, Canad. J. Math. 70 (2018), 1416-1435, arXiv:1706.08857.
- Yeats K., A study on prefixes of $c_2$ invariants, in Algebraic Combinatorics, Resurgence, Mould and Applications (CARMA), Vol. 2, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 32, European Mathematical Society, Berlin, 2020, 367-383, arXiv:1805.11735.
- Zinn-Justin J., Quantum field theory and critical phenomena, International Series of Monographs on Physics, Vol. 77, The Clarendon Press, Oxford University Press, New York, 1989.
|
|