|
SIGMA 17 (2021), 097, 16 pages arXiv:2105.11074
https://doi.org/10.3842/SIGMA.2021.097
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan
Liouville Action for Harmonic Diffeomorphisms
Jinsung Park
School of Mathematics, Korea Institute for Advanced Study, 207-43, Hoegiro 85, Dong-daemun-gu, Seoul, 130-722, Korea
Received May 25, 2021, in final form October 27, 2021; Published online November 02, 2021
Abstract
In this paper, we introduce a Liouville action for a harmonic diffeomorphism from a compact Riemann surface to a compact hyperbolic Riemann surface of genus $g\ge 2$. We derive the variational formula of this Liouville action for harmonic diffeomorphisms when the source Riemann surfaces vary with a fixed target Riemann surface.
Key words: quasi-Fuchsian group; Teichmüller space; Liouville action; harmonic diffeomorphism.
pdf (385 kb)
tex (19 kb)
References
- Ahlfors L.V., Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math. 74 (1961), 171-191.
- Jost J., Compact Riemann surfaces. An introduction to contemporary mathematics, 3rd ed., Universitext, Springer-Verlag, Berlin, 2006.
- Krasnov K., Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000), 929-979, arXiv:hep-th/0005106.
- Krasnov K., Schlenker J.-M., On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys. 279 (2008), 637-668, arXiv:math.DG/0607081.
- McIntyre A., Park J., Tau function and Chern-Simons invariant, Adv. Math. 262 (2014), 1-58, arXiv:1209.4158.
- Park J., Takhtajan L.A., Teo L.-P., Potentials and Chern forms for Weil-Petersson and Takhtajan-Zograf metrics on moduli spaces, Adv. Math. 305 (2017), 856-894, arXiv:1508.02102.
- Park J., Teo L.-P., Liouville action and holography on quasi-Fuchsian deformation spaces, Comm. Math. Phys. 362 (2018), 717-758, arXiv:1709.08787.
- Sampson J.H., Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), 211-228.
- Takhtajan L.A., Teo L.-P., Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003), 183-240, arXiv:math.CV/0204318.
- Tromba A.J., Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992.
- Wolf M., The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), 449-479.
- Zograf P.G., Takhtadzhyan L.A., On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus $0$, Math. USSR-Sb. 60 (1988), 143-161.
- Zograf P.G., Takhtadzhyan L.A., On uniformization of Riemann surfaces and the Weil-Petersson metric on Teichmüller and Schottky spaces, Math. USSR-Sb. 60 (1988), 297-313.
|
|