|
SIGMA 17 (2021), 096, 17 pages arXiv:2105.11123
https://doi.org/10.3842/SIGMA.2021.096
Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian
Hassan Boualem a and Robert Brouzet b
a) IMAG, Université de Montpellier, France
b) LAMPS, EA 4217, Université Perpignan Via Domitia, France
Received May 24, 2021, in final form October 22, 2021; Published online October 29, 2021
Abstract
We state and prove that a certain class of smooth functions said to be BH-separable is a meagre subset for the Fréchet topology. Because these functions are the only admissible Hamiltonians for Arnold-Liouville systems admitting a bi-Hamiltonian structure, we get that, generically, Arnold-Liouville systems cannot be bi-Hamiltonian. At the end of the paper, we determine, both as a concrete representation of our general result and as an illustrative list, which polynomial Hamiltonians $H$ of the form $H(x,y)=xy+ax^3+bx^2y+cxy^2+dy^3$ are BH-separable.
Key words: completely integrable Hamiltonian system; Arnold-Liouville theorem; action-angle coordinates; bi-Hamiltonian system; separability of functions; change of coordinates; Fréchet topology; meagre set.
pdf (484 kb)
tex (23 kb)
References
- Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
- Arnold V., Les méthodes mathématiques de la mécanique classique, Mir, Moscow, 1976.
- Boualem H., Brouzet R., Topology of the space of locally separable functions, Topology Appl. 299 (2021), 107728, 16 pages.
- Brouzet R., About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus, J. Math. Phys. 34 (1993), 1309-1313.
- Brouzet R., Molino P., Turiel F.J., Géométrie des systèmes bihamiltoniens, Indag. Math. (N.S.) 4 (1993), 269-296.
- Craik A.D.D., Prehistory of Faà di Bruno's formula, Amer. Math. Monthly 112 (2005), 119-130.
- Ehresmann C., Les connexions infinitésimales dans un espace fibré différentiable, in Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, 29-55.
- Falqui G., Pedroni M., Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003), 139-179, arXiv:nlin.SI/0204029.
- Fernandes R.L., Completely integrable bi-Hamiltonian systems, J. Dynam. Differential Equations 6 (1994), 53-69.
- Gel'fand I.M., Dorfman I.Ja., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13 (1979), 248-262.
- Hardy M., Combinatorics of partial derivatives, Electron. J. Combin. 13 (2006), 1, 13 pages, arXiv:math.CO/0601149.
- Hirsch M.W., Differential topology, Graduate Texts in Mathematics, Vol. 33, Springer-Verlag, New York - Heidelberg, 1976.
- Ibort A., Magri F., Marmo G., Bihamiltonian structures and Stäckel separability, J. Geom. Phys. 33 (2000), 210-228.
- Johnson W.P., The curious history of Faà di Bruno's formula, Amer. Math. Monthly 109 (2002), 217-234.
- Landi G., Marmo G., Vilasi G., Recursion operators: meaning and existence for completely integrable systems, J. Math. Phys. 35 (1994), 808-815.
- Libermann P., Marle C.-M., Géométrie symplectique, bases théoriques de la mécanique. Tome I, Publications Mathématiques de l'Université Paris VII, Vol. 21, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1986.
- Ma T.-W., Higher chain formula proved by combinatorics, Electron. J. Combin. 16 (2009), 21, 7 pages.
- Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
- Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Department of Mathematics, University of Milan, 1984, available at https://boa.unimib.it/retrieve/handle/10281/17656/21540/quaderno3-2008.pdf.
- Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math. 58 (1955), 390-403.
- Praught J., Smirnov R.G., Andrew Lenard: a mystery unraveled, SIGMA 1 (2005), 005, 7 pages, arXiv:nlin.SI/0510055.
- Tempesta P., Tondo G., Haantjes algebras of classical integrable systems, Ann. Mat. Pura Appl., to appear, arXiv:1405.5118.
|
|