Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 094, 14 pages      arXiv:2103.01136      https://doi.org/10.3842/SIGMA.2021.094
Contribution to the Special Issue on Algebraic Structures in Perturbative Quantum Field Theory in honor of Dirk Kreimer for his 60th birthday

Renormalization in Combinatorially Non-Local Field Theories: the BPHZ Momentum Scheme

Johannes Thürigen ab
a) Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
b) Institut für Physik/Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Received February 28, 2021, in final form October 24, 2021; Published online October 27, 2021

Abstract
Various combinatorially non-local field theories are known to be renormalizable. Still, explicit calculations of amplitudes are very rare and restricted to matrix field theory. In this contribution I want to demonstrate how the BPHZ momentum scheme in terms of the Connes-Kreimer Hopf algebra applies to any combinatorially non-local field theory which is renormalizable. This algebraic method improves the understanding of known results in noncommutative field theory in its matrix formulation. Furthermore, I use it to provide new explicit perturbative calculations of amplitudes in tensorial field theories of rank $r$>$2$.

Key words: non-local field theory; renormalization; Hopf algebras; multiple polylogarithms.

pdf (509 kb)   tex (32 kb)  

References

  1. Aldous D., The continuum random tree. I, Ann. Probab. 19 (1991), 1-28.
  2. Ben Geloun J., Renormalizable models in rank $d\geq 2$ tensorial group field theory, Comm. Math. Phys. 332 (2014), 117-188, arXiv:1306.1201.
  3. Ben Geloun J., Rivasseau V., A renormalizable 4-dimensional tensor field theory, Comm. Math. Phys. 318 (2013), 69-109, arXiv:1111.4997.
  4. Ben Geloun J., Samary D.O., 3D tensor field theory: renormalization and one-loop $\beta$-functions, Ann. Henri Poincaré 14 (2013), 1599-1642, arXiv:1201.0176.
  5. Bergbauer C., Kreimer D., Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology, in Physics and Number Theory, IRMA Lect. Math. Theor. Phys., Vol. 10, Eur. Math. Soc., Zürich, 2006, 133-164, arXiv:hep-th/0506190.
  6. Blaschke D.N., Gieres F., Heindl F., Schweda M., Wohlgenannt M., BPHZ renormalization and its application to non-commutative field theory, Eur. Phys. J. C 73 (2013), 2566, 16 pages, arXiv:1307.4650.
  7. Bogoliubow N.N., Parasiuk O.S., Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder, Acta Math. 97 (1957), 227-266.
  8. Bonzom V., Gurau R., Rivasseau V., Random tensor models in the large $N$ limit: uncoloring the colored tensor models, Phys. Rev. D 85 (2012), 084037, 12 pages, arXiv:1202.3637.
  9. Borinsky M., Graphs in perturbation theory. Algebraic structure and asymptotics, Springer Theses, Springer, Cham, 2018, arXiv:1807.02046.
  10. Branahl J., Hock A., Wulkenhaar R., Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures, arXiv:2008.12201.
  11. Branahl J., Hock A., Wulkenhaar R., Perturbative and geometric analysis of the quartic Kontsevich model, SIGMA 17 (2021), 085, 33 pages, arXiv:2012.02622.
  12. Broadhurst D.J., Kreimer D., Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality, Nuclear Phys. B 600 (2001), 403-422, arXiv:hep-th/0012146.
  13. Carrozza S., Tensorial methods and renormalization in group field theories, Springer Theses, Springer, Cham, 2014, arXiv:1310.3736.
  14. Carrozza S., Oriti D., Rivasseau V., Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions, Comm. Math. Phys. 330 (2014), 581-637, arXiv:1303.6772.
  15. Carrozza S., Oriti D., Rivasseau V., Renormalization of tensorial group field theories: Abelian $U(1)$ models in four dimensions, Comm. Math. Phys. 327 (2014), 603-641, arXiv:1207.6734.
  16. Connes A., Kreimer D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210 (2000), 249-273, arXiv:hep-th/9912092.
  17. Connes A., Kreimer D., Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The $\beta$-function, diffeomorphisms and the renormalization group, Comm. Math. Phys. 216 (2001), 215-241, arXiv:hep-th/0003188.
  18. Delepouve T., Gurau R., Phase transition in tensor models, J. High Energy Phys. 2015 (2015), no. 6, 178, 34 pages, arXiv:1504.05745.
  19. Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F., A Lie theoretic approach to renormalization, Comm. Math. Phys. 276 (2007), 519-549, arXiv:hep-th/0609035.
  20. Freidel L., Group field theory: an overview, Internat. J. Theoret. Phys. 44 (2005), 1769-1783, arXiv:hep-th/0505016.
  21. Grosse H., Hock A., Wulkenhaar R., Solution of the self-dual $\Phi^4$ QFT-model on four-dimensional Moyal space, J. High Energy Phys. 2020 (2020), no. 1, 081, 16 pages, arXiv:1908.04543.
  22. Grosse H., Sako A., Wulkenhaar R., Exact solution of matricial $\Phi_2^3$ quantum field theory, Nuclear Phys. B 925 (2017), 319-347, arXiv:1610.00526.
  23. Grosse H., Wulkenhaar R., Renormalisation of $\phi^4$-theory on non-commutative ${\mathbb R}^4$ to all orders, Lett. Math. Phys. 71 (2005), 13-26, arXiv:hep-th/0403232.
  24. Gurau R., Colored group field theory, Comm. Math. Phys. 304 (2011), 69-93, arXiv:0907.2582.
  25. Gurau R., The complete $1/N$ expansion of colored tensor models in arbitrary dimension, Ann. Henri Poincaré 13 (2012), 399-423, arXiv:1102.5759.
  26. Gurau R., Random tensors, Oxford University Press, Oxford, 2017.
  27. Hepp K., Proof of the Bogoliubov-Parasiuk theorem on renormalization, Comm. Math. Phys. 2 (1966), 301-326.
  28. Hock A., Matrix field theory, Ph.D. Thesis, WWU Münster, 2020, arXiv:2005.07525.
  29. Kreimer D., On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998), 303-334, arXiv:q-alg/9707029.
  30. Kreimer D., Combinatorics of (perturbative) quantum field theory, Phys. Rep. 363 (2002), 387-424, arXiv:hep-th/0010059.
  31. Kreimer D., Anatomy of a gauge theory, Ann. Physics 321 (2006), 2757-2781, arXiv:hep-th/0509135.
  32. Kreimer D., Yeats K., An étude in non-linear Dyson-Schwinger equations, Nuclear Phys. B Proc. Suppl. 160 (2006), 116-121, arXiv:hep-th/0605096.
  33. Lionni L., Marckert J.-F., Iterated foldings of discrete spaces and their limits: candidates for the role of Brownian map in higher dimensions, arXiv:1908.02259.
  34. Lionni L., Thürigen J., Multi-critical behaviour of 4-dimensional tensor models up to order 6, Nuclear Phys. B 941 (2019), 600-635, arXiv:1707.08931.
  35. Manchon D., Hopf algebras, from basics to applications to renormalization, arXiv:math.QA/0408405.
  36. Marckert J.-F., Mokkadem A., Limit of normalized quadrangulations: the Brownian map, Ann. Probab. 34 (2006), 2144-2202, arXiv:math.PR/0403398.
  37. Oriti D., Spin foam models of quantum spacetime, Ph.D. Thesis, Cambridge University, 2003, arXiv:gr-qc/0311066.
  38. Oriti D., Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity, PoS Proc. Sci. (2007), PoS(QG-Ph), 030, 38 pages, arXiv:0710.3276.
  39. Oriti D., Ryan J.P., Thürigen J., Group field theories for all loop quantum gravity, New J. Phys. 17 (2015), 023042, 46 pages, arXiv:1409.3150.
  40. Panzer E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Comm. 188 (2015), 148-166, arXiv:1403.3385.
  41. Panzer E., Wulkenhaar R., Lambert-$W$ solves the noncommutative $\Phi^4$-model, Comm. Math. Phys. 374 (2020), 1935-1961, arXiv:1807.02945.
  42. Pascalie R., A solvable tensor field theory, Lett. Math. Phys. 110 (2019), 925-943, arXiv:1903.02907.
  43. Perez A., The spin foam approach to quantum gravity, Living Rev. Relativ. 16 (2013), 3, 128 pages, arXiv:1205.2019.
  44. Pithis A.G.A., Thürigen J., Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to ${\rm O}(N)$ models, J. High Energy Phys. 2020 (2020), no. 12, 159, 54 pages, arXiv:2009.13588.
  45. Raasakka M., Tanasa A., Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory, Sém. Lothar. Combin. 70 (2013), Art. B70d, 29 pages, arXiv:1306.1022.
  46. Rivasseau V., Quantum gravity and renormalization: the tensor track, AIP Conf. Proc. 2012 (2012), 18-29, arXiv:1112.5104.
  47. Rivasseau V., Why are tensor field theories asymptotically free?, Europhys. Lett. 111 (2015), 60011, 6 pages, arXiv:1507.04190.
  48. Seidel J.J., On two-graphs and Shult's characterization of symplectic and orthogonal geometries over GF(2), T.H.-Report, No. 73-WSK-02, Department of Mathematics, Technological University Eindhoven, Eindhoven, 1973.
  49. Tanasă A., Kreimer D., Combinatorial Dyson-Schwinger equations in noncommutative field theory, J. Noncommut. Geom. 7 (2013), 255-289, arXiv:0907.2182.
  50. Tanasă A., Vignes-Tourneret F., Hopf algebra of non-commutative field theory, J. Noncommut. Geom. 2 (2008), 125-139, arXiv:0707.4143.
  51. Taylor D.E., Some topics in the theory of finite groups, Oxford University, 1971.
  52. Thürigen J., Discrete quantum geometries and their effective dimension, Ph.D. Thesis, Humboldt-Universität zu Berlin, 2015, arXiv:1510.08706.
  53. Thürigen J., Renormalization in combinatorially non-local field theories: the Hopf algebra of 2-graphs, Math. Phys. Anal. Geom. 24 (2021), 19, 26 pages, arXiv:2102.12453.
  54. Wulkenhaar R., Quantum field theory on noncommutative spaces, in Advances in Noncommutative Geometry, Springer, Cham, 2019, 607-690.
  55. Zimmermann W., Convergence of Bogoliubov's method of renormalization in momentum space, Comm. Math. Phys. 15 (1969), 208-234.

Previous article  Next article  Contents of Volume 17 (2021)