|
SIGMA 17 (2021), 083, 40 pages arXiv:2104.00895
https://doi.org/10.3842/SIGMA.2021.083
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan
Resolvent Trace Formula and Determinants of $n$ Laplacians on Orbifold Riemann Surfaces
Lee-Peng Teo
Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
Received April 07, 2021, in final form September 05, 2021; Published online September 13, 2021
Abstract
For $n$ a nonnegative integer, we consider the $n$-Laplacian $\Delta_n$ acting on the space of $n$-differentials on a confinite Riemann surface $X$ which has ramification points. The trace formula for the resolvent kernel is developed along the line à la Selberg. Using the trace formula, we compute the regularized determinant of $\Delta_n+s(s+2n-1)$, from which we deduce the regularized determinant of $\Delta_n$, denoted by $\det\!'\Delta_n$. Taking into account the contribution from the absolutely continuous spectrum, $\det\!'\Delta_n$ is equal to a constant $\mathcal{C}_n$ times $Z(n)$ when $n\geq 2$. Here $Z(s)$ is the Selberg zeta function of $X$. When $n=0$ or $n=1$, $Z(n)$ is replaced by the leading coefficient of the Taylor expansion of $Z(s)$ around $s=0$ and $s=1$ respectively. The constants $\mathcal{C}_n$ are calculated explicitly. They depend on the genus, the number of cusps, as well as the ramification indices, but is independent of the moduli parameters.
Key words: determinant of Laplacian; $n$-differentials; cocompact Riemann surfaces; Selberg trace formula.
pdf (561 kb)
tex (32 kb)
References
- Alekseevskii V.P., On functions similar to the gamma function, Comm. Proc. Kharkov Math. Soc. 1 (1889), 169-238.
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
- Barnes E.W., The theory of the $G$-function, Q. J. Math. 31 (1900), 264-314.
- D'Hoker E., Phong D.H., On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 104 (1986), 537-545.
- Efrat I., Determinants of Laplacians on surfaces of finite volume, Comm. Math. Phys. 119 (1988), 443-451.
- Fay J.D., Fourier coefficients of the resolvent for a Fuchsian group, J. Reine Angew. Math. 293-294 (1977), 143-203.
- Fischer J., An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Math., Vol. 1253, Springer-Verlag, Berlin, 1987.
- Freixas i Montplet G., von Pippich A.-M., Riemann-Roch isometries in the non-compact orbifold setting, J. Eur. Math. Soc. (JEMS) 22 (2020), 3491-3564, arXiv:1604.00284.
- Gong D.G., Zeta-determinant and torsion functions on Riemann surfaces of finite volume, Manuscripta Math. 86 (1995), 435-454.
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000.
- Hejhal D.A., The Selberg trace formula for ${\rm PSL}(2,\mathbb R)$, Vol. 1, Lecture Notes in Math., Vol. 548, Springer-Verlag, Berlin, 1976.
- Hejhal D.A., The Selberg trace formula for ${\rm PSL}(2, \mathbb R)$, Vol. 2, Lecture Notes in Math., Vol. 1001, Springer-Verlag, Berlin, 1983.
- Iwaniec H., Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, Vol. 53, Amer. Math. Soc., Providence, RI, 2002.
- Koyama S., Determinant expression of Selberg zeta functions. I, Trans. Amer. Math. Soc. 324 (1991), 149-168.
- Koyama S., Determinant expression of Selberg zeta functions. III, Proc. Amer. Math. Soc. 113 (1991), 303-311.
- McIntyre A., Takhtajan L.A., Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker's first limit formula, Geom. Funct. Anal. 16 (2006), 1291-1323, arXiv:math.CV/0410294.
- Sarnak P., Determinants of Laplacians, Comm. Math. Phys. 110 (1987), 113-120.
- Selberg A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87.
- Selberg A., Göttingen lectures on harmonic analysis, in Alte Selberg Collected Papers, Springer Collected Works in Mathematics, Springer-Verlag, Berlin, 1989, 626-675.
- Takhtajan L.A., Zograf P.G., A local index theorem for families of $\overline\partial$-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Comm. Math. Phys. 137 (1991), 399-426.
- Takhtajan L.A., Zograf P.G., Local index theorem for orbifold Riemann surfaces, Lett. Math. Phys. 109 (2019), 1119-1143, arXiv:1701.00771.
- Teo L.-P., Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points, Lett. Math. Phys. 110 (2020), 61-82, arXiv:1901.07898.
- Venkov A.B., Spectral theory of automorphic functions, Proc. Steklov Inst. Math. 153 (1982), 1-163.
- Venkov A.B., Kalinin V.L., Faddeev L.D., A nonarithmetic derivation of the Selberg trace formula, J. Soviet Math. 8 (1977), 177-199.
- Voros A., Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), 439-465.
|
|