Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 073, 83 pages      arXiv:2009.12342      https://doi.org/10.3842/SIGMA.2021.073

Locality and General Vacua in Quantum Field Theory

Daniele Colosi a and Robert Oeckl b
a) Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, C.P. 58190, Morelia, Michoacán, Mexico
b) Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58190, Morelia, Michoacán, Mexico

Received September 28, 2020, in final form July 13, 2021; Published online July 25, 2021

Abstract
We extend the framework of general boundary quantum field theory (GBQFT) to achieve a fully local description of realistic quantum field theories. This requires the quantization of non-Kähler polarizations which occur generically on timelike hypersurfaces in Lorentzian spacetimes as has been shown recently. We achieve this in two ways: On the one hand we replace Hilbert space states by observables localized on hypersurfaces, in the spirit of algebraic quantum field theory. On the other hand we apply the GNS construction to twisted star-structures to obtain Hilbert spaces, motivated by the notion of reflection positivity of the Euclidean approach to quantum field theory. As one consequence, the well-known representation of a vacuum state in terms of a sea of particle pairs in the Hilbert space of another vacuum admits a vast generalization to non-Kähler vacua, particularly relevant on timelike hypersurfaces.

Key words: quantum field theory; general boundary formulation; quantization; LSZ reduction formula; symplectic geometry; Feynman path integral; reflection positivity.

pdf (1089 kb)   tex (124 kb)  

References

  1. Atiyah M., Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186.
  2. Barrett J., Quantum gravity as topological quantum field theory, J. Math. Phys. 36 (1995), 6161-6179, arXiv:gr-qc/9506070.
  3. Birrell N.D., Davies P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Vol. 7, Cambridge University Press, Cambridge - New York, 1982.
  4. Cattaneo A.S., Mnev P., Wave relations, Comm. Math. Phys. 332 (2014), 1083-1111, arXiv:1308.5592.
  5. Colosi D., General boundary quantum field theory in de Sitter spacetime, arXiv:1010.1209.
  6. Colosi D., Oeckl R., $S$-matrix at spatial infinity, Phys. Lett. B 665 (2008), 310-313, arXiv:0710.5203.
  7. Colosi D., Oeckl R., Spatially asymptotic $S$-matrix from general boundary formulation, Phys. Rev. D 78 (2008), 025020, 22 pages, arXiv:0802.2274.
  8. Colosi D., Oeckl R., The vacuum as a Lagrangian subspace, Phys. Rev. D 100 (2019), 045018, 34 pages, arXiv:1903.08250.
  9. Colosi D., Rätzel D., The Unruh effect in general boundary quantum field theory, SIGMA 9 (2013), 019, 22 pages, arXiv:1204.6268.
  10. Crane L., Topological field theory as the key to quantum gravity, in Knots and Quantum Gravity (Riverside, CA, 1993), Oxford Lecture Ser. Math. Appl., Vol. 1, Oxford University Press, New York, 1994, 121-132, arXiv:hep-th/9308126.
  11. DeWitt B.S., Quantum field theory in curved spacetime, Phys. Rep. 19 (1975), 295-357.
  12. Díaz-Marín H.G., Dirichlet to Neumann operator for abelian Yang-Mills gauge fields, Int. J. Geom. Methods Mod. Phys. 14 (2017), 1750153, 25 pages, arXiv:1508.00449.
  13. Díaz-Marín H.G., Oeckl R., Quantum abelian Yang-Mills theory on Riemannian manifolds with boundary, SIGMA 14 (2018), 105, 31 pages, arXiv:1712.05537.
  14. Dohse M., Oeckl R., Complex structures for an $S$-matrix of Klein-Gordon theory on AdS spacetimes, Classical Quantum Gravity 32 (2015), 105007, 36 pages, arXiv:1501.04667.
  15. Donoghue J.F., Holstein B.R., Low energy theorems of quantum gravity from effective field theory, J. Phys. G: Nuclear Part. Phys. 42 (2015), 103102, 45 pages, arXiv:1506.00946.
  16. Feynman R.P., Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics 20 (1948), 367-387.
  17. Fulling S.A., Nonuniqueness of canonical field quantization in Riemannian space-time, Phys. Rev. D 7 (1973), 2850-2862.
  18. Gerlach U.H., Minkowski Bessel modes, Phys. Rev. D 38 (1988), 514-521.
  19. Groenewold H.J., On the principles of elementary quantum mechanics, Physica 12 (1946), 405-460.
  20. Haag R., Local quantum physics. Fields, particles, algebras, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.
  21. Haag R., Kastler D., An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848-861.
  22. Itzykson C., Zuber J.B., Quantum field theory, International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York, 1980.
  23. Jackiw R., Analysis of infinite-dimensional manifolds - Schrödinger representation for quantized fields, in Field Theory and Particle Physics (Campos do Jordão, 1989), World Sci. Publ., River Edge, NJ, 1990, 78-143.
  24. Kay B.S., The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes, Comm. Math. Phys. 100 (1985), 57-81.
  25. Lehmann H., Symanzik K., Zimmermann W., Zur Formulierung quantisierter Feldtheorien, Nuovo Cimento 1 (1955), 205-225.
  26. Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99-124.
  27. Narozhny N.B., Fedotov A.M., Karnakov B.M., Mur V.D., Belinskii V.A., Reply to ''Comment on `Boundary conditions in the Unruh problem''', Phys. Rev. D 70 (2004), 048702, 6 pages.
  28. Nelson E., Construction of quantum fields from Markoff fields, J. Funct. Anal. 12 (1973), 97-112.
  29. Oeckl R., Schrödinger's cat and the clock: lessons for quantum gravity, Classical Quantum Gravity 20 (2003), 5371-5380, arXiv:gr-qc/0306007.
  30. Oeckl R., States on timelike hypersurfaces in quantum field theory, Phys. Lett. B 622 (2005), 172-177, arXiv:hep-th/0505267.
  31. Oeckl R., General boundary quantum field theory: timelike hypersurfaces in the Klein-Gordon theory, Phys. Rev. D 73 (2006), 065017, 13 pages, arXiv:hep-th/0509123.
  32. Oeckl R., General boundary quantum field theory: foundations and probability interpretation, Adv. Theor. Math. Phys. 12 (2008), 319-352, arXiv:hep-th/0509122.
  33. Oeckl R., Two-dimensional quantum Yang-Mills theory with corners, J. Phys. A: Math. Theor. 41 (2008), 135401, 20 pages, arXiv:hep-th/0608218.
  34. Oeckl R., Affine holomorphic quantization, J. Geom. Phys. 62 (2012), 1373-1396, arXiv:1104.5527.
  35. Oeckl R., Holomorphic quantization of linear field theory in the general boundary formulation, SIGMA 8 (2012), 050, 31 pages, arXiv:1009.5615.
  36. Oeckl R., Observables in the general boundary formulation, in Quantum Field Theory and Gravity, Birkhäuser/Springer Basel AG, Basel, 2012, 137-156, arXiv:1101.0367.
  37. Oeckl R., Reverse engineering quantum field theory, in Quantum Theory: Reconsideration of Foundations 6 (Växjö, 2012), AIP Conf. Proc., Vol. 1508, American Institute of Physics, Melville, 2012, 428-432, arXiv:1210.0944.
  38. Oeckl R., The Schrödinger representation and its relation to the holomorphic representation in linear and affine field theory, J. Math. Phys. 53 (2012), 072301, 30 pages, arXiv:1109.5215.
  39. Oeckl R., Free Fermi and Bose fields in TQFT and GBF, SIGMA 9 (2013), 028, 46 pages, arXiv:1208.5038.
  40. Oeckl R., Schrödinger-Feynman quantization and composition of observables in general boundary quantum field theory, Adv. Theor. Math. Phys. 19 (2015), 451-506, arXiv:1201.1877.
  41. Oeckl R., Towards state locality in quantum field theory: free fermions, Quantum Stud. Math. Found. 4 (2017), 59-77, arXiv:1307.5031.
  42. Oeckl R., A local and operational framework for the foundations of physics, Adv. Theor. Math. Phys. 23 (2019), 437-592, arXiv:1610.09052.
  43. Osterwalder K., Schrader R., Axioms for Euclidean Green's functions, Comm. Math. Phys. 31 (1973), 83-112.
  44. Osterwalder K., Schrader R., Axioms for Euclidean Green's functions. II, Comm. Math. Phys. 42 (1975), 281-305.
  45. Reeh H., Schlieder S., Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden, Nuovo Cimento 22 (1961), 1051-1068.
  46. Rindler W., Kruskal space and the uniformly accelerated frame, Amer. J. Phys. 34 (1966), 1174-1178.
  47. Segal G., Quantum field theory, unpublished manuscript, 2008, available at https://web.ma.utexas.edu/rtgs/geomtop/rtg/background/QFT-2.pdf.
  48. Segal G., The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, 165-171.
  49. Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149-167.
  50. Smolin L., Linking topological quantum field theory and nonperturbative quantum gravity, J. Math. Phys. 36 (1995), 6417-6455, arXiv:gr-qc/9505028.
  51. Streater R.F., Wightman A.S., PCT, spin and statistics, and all that, W.A. Benjamin, Inc., New York - Amsterdam, 1964.
  52. Symanzik K., Euclidean quantum field theory. I. Equations for a scalar model, J. Math. Phys. 7 (1966), 510-525.
  53. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter & Co., Berlin, 1994.
  54. Unruh W.G., Notes on black-hole evaporation, Phys. Rev. D 14 (1976), 870-892.
  55. Walker K., On Witten's 3-manifold invariants, unpublished manuscript, 1991, available at https://canyon23.net/math/1991TQFTNotes.pdf.
  56. Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992.

Previous article  Next article  Contents of Volume 17 (2021)