Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 063, 26 pages      arXiv:2102.13570      https://doi.org/10.3842/SIGMA.2021.063
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan

Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains

Sergey É. Derkachov a, Karol K. Kozlowski b and Alexander N. Manashov ca
a) St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia
b) Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
c) Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany

Received March 08, 2021, in final form June 14, 2021; Published online June 25, 2021

Abstract
This work develops a new method, based on the use of Gustafson's integrals and on the evaluation of singular integrals, allowing one to establish the unitarity of the separation of variables transform for infinite-dimensional representations of rank one quantum integrable models. We examine in detail the case of the $\mathrm{SL}(2,\mathbb R)$ spin chains.

Key words: spin chains; separation of variables; Gustafson's integrals.

pdf (515 kb)   tex (39 kb)  

References

  1. Belitsky A.V., Derkachov S.É., Manashov A.N., Quantum mechanics of null polygonal Wilson loops, Nuclear Phys. B 882 (2014), 303-351, arXiv:1401.7307.
  2. Bethe H., Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys. 71 (1931), 205-226.
  3. Bytsko A.G., Teschner J., Quantization of models with non-compact quantum group symmetry: modular $XXZ$ magnet and lattice sinh-Gordon model, J. Phys. A: Math. Gen. 39 (2006), 12927-12981, arXiv:hep-th/0602093.
  4. Cavaglià A., Gromov N., Levkovich-Maslyuk F., Separation of variables and scalar products at any rank, J. High Energy Phys. 2019 (2019), no. 9, 052, 28 pages, arXiv:1907.03788.
  5. Derkachov S.É., Korchemsky G.P., Manashov A.N., Noncompact Heisenberg spin magnets from high-energy QCD. I. Baxter $Q$-operator and separation of variables, Nuclear Phys. B 617 (2001), 375-440, arXiv:hep-th/0107193.
  6. Derkachov S.É., Korchemsky G.P., Manashov A.N., Baxter $\mathbb Q$-operator and separation of variables for the open ${\rm SL}(2,{\mathbb R})$ spin chain, J. High Energy Phys. 2003 (2003), no. 10, 053, 31 pages, arXiv:hep-th/0309144.
  7. Derkachov S.É., Korchemsky G.P., Manashov A.N., Separation of variables for the quantum ${\rm SL}(2,\mathbb R)$ spin chain, J. High Energy Phys. 2003 (2003), no. 7, 047, 30 pages, arXiv:hep-th/0210216.
  8. Derkachov S.É., Kozlowski K.K., Manashov A.N., On the separation of variables for the modular XXZ magnet and the lattice sinh-Gordon models, Ann. Henri Poincaré 20 (2019), 2623-2670, arXiv:1806.04487.
  9. Derkachov S.É., Manashov A.N., Spin chains and Gustafson's integrals, J. Phys. A: Math. Theor. 50 (2017), 294006, 20 pages, arXiv:1611.09593.
  10. Gel'fand I.M., Graev M.I., Vilenkin N.Ya., Generalized functions, Vol. 5, Integral geometry and representation theory, Academic Press, New York - London, 1966.
  11. Gromov N., Levkovich-Maslyuk F., Ryan P., Determinant form of correlators in high rank integrable spin chains via separation of variables, arXiv:2011.08229.
  12. Gromov N., Levkovich-Maslyuk F., Ryan P., Volin D., Dual separated variables and scalar products, Phys. Lett. B 806 (2020), 135494, 5 pages, arXiv:1910.13442.
  13. Gromov N., Levkovich-Maslyuk F., Sizov G., New construction of eigenstates and separation of variables for ${\rm SU}(N)$ quantum spin chains, J. High Energy Phys. 2017 (2017), no. 9, 111, 40 pages, arXiv:1610.08032.
  14. Gustafson R.A., Some $q$-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. 341 (1994), 69-119.
  15. Gutzwiller M.C., The quantum mechanical Toda lattice, Ann. Physics 124 (1980), 347-381.
  16. Hall B.C., Holomorphic methods in analysis and mathematical physics, in First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Contemp. Math., Vol. 260, Amer. Math. Soc., Providence, RI, 2000, 1-59, arXiv:quant-ph/9912054.
  17. Izergin A.G., Korepin V.E., The quantum inverse scattering method approach to correlation functions, Comm. Math. Phys. 94 (1984), 67-92.
  18. Kharchev S., Lebedev D., Integral representation for the eigenfunctions of a quantum periodic Toda chain, Lett. Math. Phys. 50 (1999), 53-77, arXiv:hep-th/9910265.
  19. Kharchev S., Lebedev D., Integral representations for the eigenfunctions of quantum open and periodic Toda chains from the QISM formalism, J. Phys. A: Math. Gen. 34 (2001), 2247-2258, arXiv:hep-th/0007040.
  20. Kitanine N., Maillet J.M., Terras V., Correlation functions of the $XXZ$ Heisenberg spin-$\frac{1}{2}$ chain in a magnetic field, Nuclear Phys. B 567 (2000), 554-582, arXiv:math-ph/9907019.
  21. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  22. Kozlowski K.K., Unitarity of the SoV transform for the Toda chain, Comm. Math. Phys. 334 (2015), 223-273, arXiv:1306.4967.
  23. Kulish P.P., Reshetikhin N.Yu., Diagonalisation of ${\rm GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model), J. Phys. A: Math. Gen. 16 (1983), L591-L596.
  24. Kulish P.P., Sklyanin E.K., Solutions of the Yang-Baxter equation, J. Sov. Math. 19 (1982), 1596-1620.
  25. Kuznetsov V.B., Sklyanin E.K., On Bäcklund transformations for many-body systems, J. Phys. A: Math. Gen. 31 (1998), 2241-2251, arXiv:solv-int/9711010.
  26. Lieb E.H., Liniger W., Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130 (1963), 1605-1616.
  27. Lieb E.H., Wu F.Y., Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension, Phys. Rev. Lett. 20 (1968), 1445-1448, Erratum, Phys. Rev. Lett. 21 (1968), 192.
  28. Maillet J.M., Niccoli G., On quantum separation of variables, J. Math. Phys. 59 (2018), 091417, 47 pages, arXiv:1807.11572.
  29. Maillet J.M., Niccoli G., On quantum separation of variables beyond fundamental representations, SciPost Phys. 10 (2021), 026, 38 pages, arXiv:1903.06618.
  30. Maillet J.M., Niccoli G., Vignoli L., On scalar products in higher rank quantum separation of variables, SciPost Phys. 9 (2020), 086, 64 pages, arXiv:2003.04281.
  31. Orbach R., Linear antiferromagnetic chain with anisotropic coupling, Phys. Rev. 112 (1958), 309-316.
  32. Rains E.M., Transformations of elliptic hypergeometric integrals, Ann. of Math. 171 (2010), 169-243.
  33. Ryan P., Volin D., Separated variables and wave functions for rational $\mathfrak{gl}(N)$ spin chains in the companion twist frame, J. Math. Phys. 60 (2019), 032701, 23 pages, arXiv:1810.10996.
  34. Ryan P., Volin D., Separation of variables for rational $\mathfrak{gl}(n)$ spin chains in any compact representation, via fusion, embedding morphism and Bäcklund flow, Comm. Math. Phys. 383 (2021), 311-343, arXiv:2002.12341.
  35. Semenov-Tian-Shansky M.A., Quantization of open Toda lattices, in Encyclopedia of Mathematical Sciences, Lecture Notes in Phys., Vol. 16, Springer, Berlin - Heidelberg, 1994, 226-259.
  36. Silantyev A.V., Transition function for the Toda chain, Theoret. and Math. Phys. 150 (2007), 315-331, arXiv:nlin.SI/0603017.
  37. Sklyanin E.K., The quantum Toda chain, in Nonlinear Equations in Classical and Quantum Field Theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., Vol. 226, Springer, Berlin, 1985, 196-233.
  38. Sklyanin E.K., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen. 21 (1988), 2375-2389.
  39. Sklyanin E.K., Functional Bethe ansatz, in Integrable and Superintegrable Systems, World Sci. Publ., Teaneck, NJ, 1990, 8-33.
  40. Sklyanin E.K., Quantum inverse scattering method. Selected topics, in Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63-97, arXiv:hep-th/9211111.
  41. Sklyanin E.K., Separation of variables - new trends, Progr. Theoret. Phys. Suppl. 118 (1995), 35-60, arXiv:solv-int/9504001.
  42. Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  43. Slavnov N.A., Calculation of scalar products of wave functions and form factors in the framework of the alcebraic Bethe ansatz, Theoret. and Math. Phys. 79 (1989), 502-508.
  44. Spiridonov V.P., Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys 63 (2008), 405-472, arXiv:0805.3135.
  45. Wallach N.R., Real reductive groups. II, Pure and Applied Mathematics, Vol. 132, Academic Press, Inc., Boston, MA, 1992.

Previous article  Next article  Contents of Volume 17 (2021)