|
SIGMA 17 (2021), 062, 39 pages arXiv:2005.02744
https://doi.org/10.3842/SIGMA.2021.062
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday
Positive Scalar Curvature on Spin Pseudomanifolds: the Fundamental Group and Secondary Invariants
Boris Botvinnik a, Paolo Piazza b and Jonathan Rosenberg c
a) Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA
b) Dipartimento di Matematica ''Guido Castelnuovo'', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
c) Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA
Received May 26, 2020, in final form June 08, 2021; Published online June 24, 2021
Abstract
In this paper we continue the study of positive scalar curvature (psc) metrics on a depth-1 Thom-Mather stratified space $M_\Sigma$ with singular stratum $\beta M$ (a closed manifold of positive codimension) and associated link equal to $L$, a smooth compact manifold. We briefly call such spaces manifolds with $L$-fibered singularities. Under suitable spin assumptions we give necessary index-theoretic conditions for the existence of wedge metrics of positive scalar curvature. Assuming in addition that $L$ is a simply connected homogeneous space of positive scalar curvature, $L=G/H$, with the semisimple compact Lie group $G$ acting transitively on $L$ by isometries, we investigate when these necessary conditions are also sufficient. Our main result is that our conditions are indeed sufficient for large classes of examples, even when $M_\Sigma$ and $\beta M$ are not simply connected. We also investigate the space of such psc metrics and show that it often splits into many cobordism classes.
Key words: positive scalar curvature; pseudomanifold; singularity; bordism; transfer; $K$-theory; index; rho-invariant.
pdf (706 kb)
tex (55 kb)
References
- Albin P., Gell-Redman J., The index formula for families of Dirac type operators on pseudomanifolds, arXiv:1712.08513.
- Albin P., Gell-Redman J., The index of Dirac operators on incomplete edge spaces, SIGMA 12 (2016), 089, 45 pages, arXiv:1312.4241.
- Albin P., Gell-Redman J., Piazza P., Higher index theory for Dirac operators on wedge pseudomanifolds, in preparation.
- Albin P., Leichtnam E., Mazzeo R., Piazza P., The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 241-310, arXiv:1112.0989.
- Albin P., Piazza P., Stratified surgery and $K$-theory invariants of the signature operator, Ann. Sci. Éc. Norm. Supér. (4), to appear, arXiv:1710.00934.
- Azzali S., Wahl C., Two-cocycle twists and Atiyah-Patodi-Singer index theory, Math. Proc. Cambridge Philos. Soc. 167 (2019), 437-487, arXiv:1312.6373.
- Baum P., Douglas R.G., Taylor M.E., Cycles and relative cycles in analytic $K$-homology, J. Differential Geom. 30 (1989), 761-804.
- Benameur M.-T., Roy I., The Higson-Roe exact sequence and $\ell^2$ eta invariants, J. Funct. Anal. 268 (2015), 974-1031, arXiv:1409.2717.
- Bismut J.-M., Cheeger J., $\eta$-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), 33-70.
- Botvinnik B., Manifolds with singularities accepting a metric of positive scalar curvature, Geom. Topol. 5 (2001), 683-718, arXiv:math.DG/9910177.
- Botvinnik B., Ebert J., Randal-Williams O., Infinite loop spaces and positive scalar curvature, Invent. Math. 209 (2017), 749-835, arXiv:1411.7408.
- Botvinnik B., Gilkey P., The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995), 507-517.
- Botvinnik B., Gilkey P., Stolz S., The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology, J. Differential Geom. 46 (1997), 374-405.
- Botvinnik B., Piazza P., Rosenberg J., Positive scalar curvature on simply connected spin pseudomanifolds, J. Topol. Anal., to appear, arXiv:1908.04420.
- Botvinnik B., Rosenberg J., Positive scalar curvature on manifolds with fibered singularities, arXiv:1808.06007.
- Botvinnik B., Walsh M.G., Homotopy invariance of the space of metrics with positive scalar curvature on manifolds with singularities, SIGMA 17 (2021), 034, 27 pages, arXiv:2005.03073.
- Buggisch L., The spectral flow theorems for families of twisted Dirac operators, Ph.D. Thesis, University of Münster, 2018, available at https: d-nb.info/1190724960/34.
- Bunke U., A $K$-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995), 241-279.
- Debord C., Lescure J.-M., Rochon F., Pseudodifferential operators on manifolds with fibred corners, Ann. Inst. Fourier (Grenoble) 65 (2015), 1799-1880, arXiv:1112.4575.
- Dwyer W., Schick T., Stolz S., Remarks on a conjecture of Gromov and Lawson, in High-Dimensional Manifold Topology, World Sci. Publ., River Edge, NJ, 2003, 159-176, arXiv:math.GT/0208011.
- Ebert J., The two definitions of the index difference, Trans. Amer. Math. Soc. 369 (2017), 7469-7507, arXiv:1308.4998.
- Ebert J., Index theory in spaces of manifolds, Math. Ann. 374 (2019), 931-962, arXiv:1608.01701.
- Ebert J., Frenck G., The Gromov-Lawson-Chernysh surgery theorem, Bol. Soc. Mat. Mex. 27 (2021), 37, 43 pages, arXiv:1807.06311.
- Ebert J., Randal-Williams O., Infinite loop spaces and positive scalar curvature in the presence of a fundamental group, Geom. Topol. 23 (2019), 1549-1610, arXiv:1711.11363.
- Gromov M., Lawson Jr. H.B., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434.
- Gromov M., Lawson Jr. H.B., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83-196.
- Joyce D., A new construction of compact 8-manifolds with holonomy ${\rm Spin}(7)$, J. Differential Geom. 53 (1999), 89-130, arXiv:math.DG/9910002.
- Kasparov G.G., Equivariant $KK$-theory and the Novikov conjecture, Invent. Math. 91 (1988), 147-201.
- Kasparov G.G., $K$-theory, group $C^*$-algebras, and higher signatures (conspectus), in Novikov Conjectures, Index Theorems and Rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., Vol. 226, Cambridge University Press, Cambridge, 1995, 101-146.
- Kreck M., Stolz S., Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993), 825-850.
- Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- Leichtnam E., Piazza P., Spectral sections and higher Atiyah-Patodi-Singer index theory on Galois coverings, Geom. Funct. Anal. 8 (1998), 17-58.
- Leichtnam E., Piazza P., On higher eta-invariants and metrics of positive scalar curvature, $K$-Theory 24 (2001), 341-359.
- Leichtnam E., Piazza P., Dirac index classes and the noncommutative spectral flow, J. Funct. Anal. 200 (2003), 348-400.
- Mazzeo R., Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations 16 (1991), 1615-1664.
- Piazza P., Schick T., Bordism, rho-invariants and the Baum-Connes conjecture, J. Noncommut. Geom. 1 (2007), 27-111, arXiv:math.KT/0407388.
- Piazza P., Schick T., Groups with torsion, bordism and rho invariants, Pacific J. Math. 232 (2007), 355-378, arXiv:math.GN/0604319.
- Piazza P., Schick T., Rho-classes, index theory and Stolz' positive scalar curvature sequence, J. Topol. 7 (2014), 965-1004, arXiv:1210.6892.
- Piazza P., Vertman B., Eta and rho invariants on manifolds with edges, Ann. Inst. Fourier (Grenoble) 69 (2019), 1955-2035, arXiv:1604.07420.
- Piazza P., Zenobi V.F., Singular spaces, groupoids and metrics of positive scalar curvature, J. Geom. Phys. 137 (2019), 87-123, arXiv:1803.02697.
- Rosenberg J., $C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II, in Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., Vol. 123, Longman Sci. Tech., Harlow, 1986, 341-374.
- Rosenberg J., $C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III, Topology 25 (1986), 319-336.
- Schick T., A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), 1165-1168, arXiv:math.GT/0403063.
- Stolz S., Concordance classes of positive scalar curvature metrics, available at https://www3.nd.edu/~stolz/preprint.html.
- Stolz S., Positive scalar curvature metrics - existence and classification questions, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 625-636.
- Stolz S., Manifolds of positive scalar curvature, in Topology of High-Dimensional Manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes, Vol. 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661-709.
- Wahl C., The Atiyah-Patodi-Singer index theorem for Dirac operators over $C^\ast$-algebras, Asian J. Math. 17 (2013), 265-319, arXiv:0901.0381.
- Xie Z., Yu G., A relative higher index theorem, diffeomorphisms and positive scalar curvature, Adv. Math. 250 (2014), 35-73, arXiv:1204.3664.
- Xie Z., Yu G., Zeidler R., On the range of the relative higher index and the higher rho-invariant for positive scalar curvature, arXiv:1712.03722.
|
|