|
SIGMA 17 (2021), 060, 58 pages arXiv:2011.01012
https://doi.org/10.3842/SIGMA.2021.060
Linear ${\mathbb Z}_2^n$-Manifolds and Linear Actions
Andrew James Bruce, Eduardo Ibarguëngoytia and Norbert Poncin
Department of Mathematics, University of Luxembourg, Maison du Nombre, 6, avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
Received November 05, 2020, in final form May 30, 2021; Published online June 16, 2021
Abstract
We establish the representability of the general linear ${\mathbb Z}_2^n$-group and use the restricted functor of points – whose test category is the category of ${\mathbb Z}_2^n$-manifolds over a single topological point – to define its smooth linear actions on ${\mathbb Z}_2^n$-graded vector spaces and linear ${\mathbb Z}_2^n$-manifolds. Throughout the paper, particular emphasis is placed on the full faithfulness and target category of the restricted functor of points of a number of categories that we are using.
Key words: supergeometry; ringed spaces; functors of points; linear group actions.
pdf (787 kb)
tex (67 kb)
References
- Aizawa N., Isaac P.S., Segar J., $\mathbb Z_2\times\mathbb Z_2$ generalizations of $\mathcal N=1$ superconformal Galilei algebras and their representations, J. Math. Phys. 60 (2019), 023507, 11 pages, arXiv:1808.09112.
- Aizawa N., Kuznetsova Z., Tanaka H., Toppan F., $\mathbb{Z}_2\times\mathbb{Z}_2$-graded Lie symmetries of the Lévy-Leblond equations, Prog. Theor. Exp. Phys. (2016), 123A01, 26 pages, arXiv:1609.08224.
- Aizawa N., Segar J., $\mathbb Z_2\times\mathbb Z_2$ generalizations of $\mathcal N=2$ super Schrödinger algebras and their representations, J. Math. Phys. 58 (2017), 113501, 14 pages, arXiv:1705.10414.
- Albuquerque H., Majid S., Quasialgebra structure of the octonions, J. Algebra 220 (1999), 188-224, arXiv:math.QA/9802116.
- Albuquerque H., Majid S., Clifford algebras obtained by twisting of groupalgebras, J. Pure Appl. Algebra 171 (2002), 133-148, arXiv:math.QA/0011040.
- Balduzzi L., Carmeli C., Cassinelli G., Super vector bundles, J. Phys. Conf. Ser. 284 (2011), 012010, 10 pages.
- Bartocci C., Bruzzo U., Hernández Ruipérez D., The geometry ofsupermanifolds, Mathematics and its Applications, Vol. 71, Kluwer Academic Publishers Group, Dordrecht, 1991.
- Bernstein J., Leites D., Molotkov V., Shander V., Seminars of Supersymmetries. Vol. 1. Algebra and calculus, MCCME, Moscow, 2013.
- Bonavolontà G., Poncin N., On the category of Lie $n$-algebroids, J. Geom. Phys. 73 (2013), 70-90.
- Bruce A.J., On a ${\mathbb Z}_2^n$-graded version of supersymmetry, Symmetry 11 (2019), 116, 20 pages, arXiv:1812.02943.
- Bruce A.J., Grabowski J., Riemannian structures on ${\mathbb Z}_2^n$-manifolds, Mathematics 8 (2020), 1469, 23 pages, arXiv:2007.07666.
- Bruce A.J., Ibarguengoytia E., The graded differential geometry of mixed symmetry tensors, Arch. Math. (Brno) 55 (2019), 123-137, arXiv:1806.04048.
- Bruce A.J., Ibarguengoytia E., Poncin N., The Schwarz-Voronov embedding of $\mathbb Z_2^n$-manifolds, SIGMA 16 (2020), 002, 47 pages, arXiv:1906.09834.
- Bruce A.J., Poncin N., Functional analytic issues in $\mathbb Z_2^n$-geometry, Rev. Un. Mat. Argentina 60 (2019), 611-636, arXiv:1807.11739.
- Bruce A. J., Poncin N., Products in the category of $\mathbb Z^n_2$-manifolds, J. Nonlinear Math. Phys. 26 (2019), 420-453, arXiv:1807.11740.
- Carmeli C., Caston L., Fioresi R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011.
- Carmeli C., Fioresi R., Varadarajan V.S., Super bundles, Universe 4 (2018), 46, 12 pages, arXiv:1801.07181.
- Covolo T., Grabowski J., Poncin N., The category of $\mathbb{Z}_2^n$-supermanifolds, J. Math. Phys. 57 (2016), 073503, 16 pages, arXiv:1602.03312.
- Covolo T., Grabowski J., Poncin N., Splitting theorem for $\mathbb{Z}_2^n$-supermanifolds, J. Geom. Phys. 110 (2016), 393-401, arXiv:1602.03671.
- Covolo T., Kwok S., Poncin N., Differential calculus on ${\mathbb Z}_{2}^{n}$-supermanifolds, arXiv:1608.00949.
- Covolo T., Kwok S., Poncin N., The Frobenius theorem for ${\mathbb Z}_{2}^{n}$-supermanifolds, arXiv:1608.00961.
- Covolo T., Kwok S., Poncin N., Local forms of morphisms of colored supermanifolds, J. Geom. Phys. 168 (2021), 104302, 21 pages, arXiv:2010.10026.
- Covolo T., Ovsienko V., Poncin N., Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys. 62 (2012), 2294-2319, arXiv:1109.5877.
- Deligne P., Morgan J.W., Notes on supersymmetry (following Joseph Bernstein), in Quantum Fields and Strings: a Course for Mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, 41-97.
- di Brino G., Pištalo D., Poncin N., Koszul-Tate resolutions as cofibrant replacements of algebras over differential operators, J. Homotopy Relat. Struct. 13 (2018), 793-846, arXiv:1801.03770.
- Di Brino G., Pištalo D., Poncin N., Homotopical algebraic context over differential operators, J. Homotopy Relat. Struct. 14 (2019), 293-347, arXiv:1706.05922.
- Drühl K., Haag R., Roberts J.E., On parastatistics, Comm. Math. Phys. 18 (1970), 204-226.
- Green H.S., A generalized method of field quantization, Phys. Rev. 90 (1953), 270-273.
- Greenberg O.W., Messiah A.M.L., Selection rules for parafields and the absence of para particles in nature, Phys. Rev. 138 (1965), B1155-B1167.
- Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222.
- Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York - Heidelberg, 1977.
- Kostant B., Graded manifolds, graded Lie theory, and prequantization, in Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math., Vol. 570, Springer, Berlin - Heidelberg, 1977, 177-306.
- Leites D.A., Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), no. 1, 1-64.
- Leites D.A., Serganova V., Models of representations of some classical supergroups, Math. Scand. 68 (1991), 131-147.
- Mac Lane S., Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.
- Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1997.
- Poncin N., Towards integration on colored supermanifolds, in Geometry of Jets and Fields, Banach Center Publ., Vol. 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016, 201-217.
- Sánchez-Valenzuela O.A., Linear supergroup actions. I. On the defining properties, Trans. Amer. Math. Soc. 307 (1988), 569-595.
- Schwarz A.S., Supergravity, complex geometry and $G$-structures, Comm. Math. Phys. 87 (1982), 37-63.
- Schwarz A.S., On the definition of superspace, Theoret. and Math. Phys. 60 (1984), 657-660.
- Tennison B.R., Sheaf theory, London Mathematical Society Lecture Note Series, Vol. 20, Cambridge University Press, Cambridge, England - New York - Melbourne, 1975.
- Toën B., Vezzosi G., Homotopical algebraic geometry. I. Topos theory, Adv. Math. 193 (2005), 257-372, arXiv:math.AG/0207028.
- Toën B., Vezzosi G., Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), x+224 pages, arXiv:math.AG/0404373.
- Tolstoy V.N., Super-de Sitter and alternative super-Poincaré symmetries, in Lie Theory and its Applications in Physics, Springer Proc. Math. Stat., Vol. 111, Springer, Tokyo, 2014, 357-367, arXiv:1610.01566.
- Varadarajan V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, Vol. 11, Amer. Math. Soc., Providence, RI, 2004.
- Voronov A.A., Maps of supermanifolds, Theoret. and Math. Phys. 60 (1984), 660-664.
- Waelbroeck L., Topological vector spaces and algebras, Lecture Notes in Math., Vol. 230, Springer-Verlag, Berlin - New York, 1971.
- Yang W., Jing S., A new kind of graded Lie algebra and parastatistical supersymmetry, Sci. China Ser. A 44 (2001), 1167-1173, arXiv:math-ph/0212004.
|
|