|
SIGMA 17 (2021), 057, 7 pages arXiv:2103.01732
https://doi.org/10.3842/SIGMA.2021.057
Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}\nu}(z)$ with Respect to Order
Yuri Krynytskyi and Andrij Rovenchak
Department for Theoretical Physics, Ivan Franko National University of Lviv, Ukraine
Received May 15, 2021, in final form June 01, 2021; Published online June 10, 2021
Abstract
The paper presents the derivation of the asymptotic behavior of $\nu$-zeros of the modified Bessel function of imaginary order $K_{{\rm i}\nu}(z)$. This derivation is based on the quasiclassical treatment of the exponential potential on the positive half axis. The asymptotic expression for the $\nu$-zeros (zeros with respect to order) contains the Lambert $W$ function, which is readily available in most computer algebra systems and numerical software packages. The use of this function provides much higher accuracy of the estimation comparing to known relations containing the logarithm, which is just the leading term of $W(x)$ at large $x$. Our result ensures accuracies sufficient for practical applications.
Key words: quasiclassical approximation; exponential potential; $\nu$-zeros; modified Bessel functions of the second kind; imaginary order; Lambert $W$ function.
pdf (759 kb)
tex (358 kb)
References
- Abramowitz M., Stegun I.A. (Editors), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966.
- Ahmed Z., Ghosh D., Kumar S., Turumella N., Solvable models of an open well and a bottomless barrier: one-dimensional exponential potentials, Eur. J. Phys. 39 (2018), 025404, 10 pages, arXiv:1706.05275.
- Amore P., Fernández M.F., Accurate calculation of the complex eigenvalues of the Schrödinger equation with an exponential potential, Phys. Lett. A 372 (2008), 3149-3152, arXiv:0712.3375.
- Bagirova S.M., Khanmamedov A.K., On zeros of the modified Bessel function of the second kind, Comput. Math. Math. Phys. 60 (2020), 817-820.
- Balogh C.B., Asymptotic expansions of the modified Bessel function of the third kind of imaginary order, SIAM J. Appl. Math. 15 (1967), 1315-1323.
- Bethe H.A., Bacher R.F., Nuclear physics A. Stationary states of nuclei, Rev. Mod. Phys. 8 (1936), 82-229.
- Bhaduri R.K., Sprung D.W.L., Suzuki A., When is the lowest order WKB quantization exact?, Can. J. Phys. 84 (2006), 573-581, arXiv:gr-qc/0508107.
- Campbell J., Determination of $\nu$-zeros of Hankel functions, Comput. Phys. Comm. 32 (1984), 333-339.
- Cochran J.A., The zeros of Hankel functions as functions of their order, Numer. Math. 7 (1965), 238-250.
- Cochran J.A., Hoffspiegel J.N., Numerical techniques for finding $\nu $-zeros of Hankel functions, Math. Comp. 24 (1970), 413-422.
- Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E., On the Lambert $W$ function, Adv. Comput. Math. 5 (1996), 329-359.
- Curtis L.J., Ellis D.G., Use of the Einstein-Brilloui-Keller action quantization, Amer. J. Phys. 72 (2004), 1521-1523.
- Dunster T.M., Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter, SIAM J. Math. Anal. 21 (1990), 995-1018.
- Ferreira E.M., Sesma J., Zeros of the Macdonald function of complex order, J. Comput. Appl. Math. 211 (2008), 223-231, arXiv:math.CA/0607471.
- Guo K.-X., Xiao B., Zhou Y., Zhang Z., Polaron effects on the third-harmonic generation in asymmetrical semi-exponential quantum wells, J. Optics 17 (2015), 035505, 6 pages.
- Guo Z.-K., Zhang Y.-Z., Interacting phantom energy, Phys. Rev. D 71 (2005), 023501, 5 pages, arXiv:1910.06796.
- Johansson F., Computing the Lambert $W$ function in arbitrary-precision complex interval arithmetic, Numer. Algorithms 83 (2020), 221-242, arXiv:1705.03266.
- Kamali V., Motaharfar M., Ramos R.O., Warm brane inflation with an exponential potential: a consistent realization away from the swampland, Phys. Rev. D 101 (2020), 023535, 13 pages, arXiv:1910.06796.
- Ma S.T., Redundant zeros in the discrete energy spectra in Heisenberg's theory of characteristic matrix, Phys. Rev. 69 (1946), 668-668.
- Magnus W., Kotin L., The zeros of the Hankel function as a function of its order, Numer. Math. 2 (1960), 228-244.
- Migdal A.B., Krainov V., Approximation methods in quantum mechanics, W.A. Benjamin, Inc., New York - Amsterdam, 1969.
- Pisanty E., Answer to: Eigenvalues and eigenfunctions of the exponential potential $V(x)=\exp(|x|)$, 2016, available at https://physics.stackexchange.com/questions/47128/eigenvalues-and-eigenfunctions-of-the-exponential-potential-vx-expx.
- Sasaki R., Znojil M., One-dimensional Schrödinger equation with non-analytic potential $V(x)=-g^2\exp (-|x|)$ and its exact Bessel-function solvability, J. Phys. A: Math. Theor. 49 (2016), 445303, 12 pages, arXiv:1605.07310.
- Sun Y., Xiao J.-L., Coherence effects of the strongly-coupled optical polaron-level qubit in a quantum well with asymmetrical semi-exponential potential, Superlattices Microstruct. 145 (2020), 106617, 7 pages.
- Vakarchuk I., Quantum mechanics, Lviv University Press, Lviv, 2012.
- Yesilgul U., Ungan F., Sakiroglu S., Sari H., Kasapoglu E., Sökmen I., Nonlinear optical properties of a semi-exponential quantum wells: effect of high-frequency intense laser field, Optik 185 (2019), 311-316.
|
|