|
SIGMA 17 (2021), 049, 23 pages arXiv:2012.09625
https://doi.org/10.3842/SIGMA.2021.049
Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
Jean-Louis Clerc and Khalid Koufany
Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
Received January 12, 2021, in final form May 06, 2021; Published online May 13, 2021
Abstract
Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $\mathbb{C}\ell(\mathbb R^n)$,
$\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group ${\rm Spin}(n)$.
The group $G= {\rm Spin}(1,n+1)$ is a (twofold) covering of the conformal group of $\mathbb R^n$.
For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation
of $G$ realized on a (subspace of) $C^\infty(\mathbb R^n,\mathbb S)$ (resp. $C^\infty(\mathbb R^n,\mathbb S')$).
For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator
$B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n,\mathbb{S}\,\otimes\, \mathbb{S}')$
into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n) \otimes \mathbb{C})$ which intertwines the representations
$\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the
representation of ${\rm Spin}(n)$ on the space $\Lambda^*_k(\mathbb R^n) \otimes \mathbb{C}$ of complex-valued
alternating $k$-forms on $\mathbb{R}^n$.
Key words: Clifford algebra; spinors; tensor product; conformal analysis; symmetry breaking differential operators.
pdf (473 kb)
tex (25 kb)
References
- Beckmann R., Clerc J.-L., Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, J. Funct. Anal. 262 (2012), 4341-4376, arXiv:1104.3461.
- Ben Saïd S., Clerc J.-L., Koufany K., Conformally covariant bi-differential operators for differential forms, Comm. Math. Phys. 373 (2020), 739-761, arXiv:1809.06290.
- Ben Saïd S., Clerc J.-L., Koufany K., Conformally covariant bi-differential operators on a simple real Jordan algebra, Int. Math. Res. Not. 2020 (2020), 2287-2351, arXiv:1704.01817.
- Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.
- Clerc J.-L., Symmetry breaking differential operators, the source operator and Rodrigues formulae, Pacific J. Math. 307 (2020), 79-107, arXiv:1902.06073.
- Clerc J.-L., Ørsted B., Conformal covariance for the powers of the Dirac operator, J. Lie Theory 30 (2020), 345-360, arXiv:1409.4983.
- Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications, Vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1992.
- Deligne P., Notes on spinors, in Quantum Fields and Strings: a Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, 99-135.
- Fischmann M., Ørsted B., Somberg P., Bernstein-Sato identities and conformal symmetry breaking operators, J. Funct. Anal. 277 (2019), 108219, 36 pages, arXiv:1711.01546.
- Gel'fand I.M., Shilov G.E., Generalized functions. Vol. 1. Properties and operations, Academic Press, New York - London, 1964.
- Knapp A.W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, Vol. 36, Princeton University Press, Princeton, NJ, 1986.
- Kobayashi T., F-method for symmetry breaking operators, Differential Geom. Appl. 33 (2014), suppl., 272-289, arXiv:1303.3541.
- Kobayashi T., Pevzner M., Differential symmetry breaking operators: II. Rankin-Cohen operators for symmetric pairs, Selecta Math. (N.S.) 22 (2016), 847-911, arXiv:1301.2111.
|
|