Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 049, 23 pages      arXiv:2012.09625      https://doi.org/10.3842/SIGMA.2021.049

Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations

Jean-Louis Clerc and Khalid Koufany
Université de Lorraine, CNRS, IECL, F-54000 Nancy, France

Received January 12, 2021, in final form May 06, 2021; Published online May 13, 2021

Abstract
Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $\mathbb{C}\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group ${\rm Spin}(n)$. The group $G= {\rm Spin}(1,n+1)$ is a (twofold) covering of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ realized on a (subspace of) $C^\infty(\mathbb R^n,\mathbb S)$ (resp. $C^\infty(\mathbb R^n,\mathbb S')$). For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n,\mathbb{S}\,\otimes\, \mathbb{S}')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n) \otimes \mathbb{C})$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of ${\rm Spin}(n)$ on the space $\Lambda^*_k(\mathbb R^n) \otimes \mathbb{C}$ of complex-valued alternating $k$-forms on $\mathbb{R}^n$.

Key words: Clifford algebra; spinors; tensor product; conformal analysis; symmetry breaking differential operators.

pdf (473 kb)   tex (25 kb)  

References

  1. Beckmann R., Clerc J.-L., Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, J. Funct. Anal. 262 (2012), 4341-4376, arXiv:1104.3461.
  2. Ben Saïd S., Clerc J.-L., Koufany K., Conformally covariant bi-differential operators for differential forms, Comm. Math. Phys. 373 (2020), 739-761, arXiv:1809.06290.
  3. Ben Saïd S., Clerc J.-L., Koufany K., Conformally covariant bi-differential operators on a simple real Jordan algebra, Int. Math. Res. Not. 2020 (2020), 2287-2351, arXiv:1704.01817.
  4. Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.
  5. Clerc J.-L., Symmetry breaking differential operators, the source operator and Rodrigues formulae, Pacific J. Math. 307 (2020), 79-107, arXiv:1902.06073.
  6. Clerc J.-L., Ørsted B., Conformal covariance for the powers of the Dirac operator, J. Lie Theory 30 (2020), 345-360, arXiv:1409.4983.
  7. Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications, Vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1992.
  8. Deligne P., Notes on spinors, in Quantum Fields and Strings: a Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, 99-135.
  9. Fischmann M., Ørsted B., Somberg P., Bernstein-Sato identities and conformal symmetry breaking operators, J. Funct. Anal. 277 (2019), 108219, 36 pages, arXiv:1711.01546.
  10. Gel'fand I.M., Shilov G.E., Generalized functions. Vol. 1. Properties and operations, Academic Press, New York - London, 1964.
  11. Knapp A.W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, Vol. 36, Princeton University Press, Princeton, NJ, 1986.
  12. Kobayashi T., F-method for symmetry breaking operators, Differential Geom. Appl. 33 (2014), suppl., 272-289, arXiv:1303.3541.
  13. Kobayashi T., Pevzner M., Differential symmetry breaking operators: II. Rankin-Cohen operators for symmetric pairs, Selecta Math. (N.S.) 22 (2016), 847-911, arXiv:1301.2111.

Previous article  Next article  Contents of Volume 17 (2021)