|
SIGMA 17 (2021), 044, 22 pages arXiv:1812.10688
https://doi.org/10.3842/SIGMA.2021.044
Contribution to the Special Issue on Primitive Forms and Related Topics in honor of Kyoji Saito for his 77th birthday
On the Abuaf-Ueda Flop via Non-Commutative Crepant Resolutions
Wahei Hara
The Mathematics and Statistics Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
Received September 30, 2020, in final form April 18, 2021; Published online April 30, 2021
Abstract
The Abuaf-Ueda flop is a 7-dimensional flop related to $G_2$ homogeneous spaces. The derived equivalence for this flop was first proved by Ueda using mutations of semi-orthogonal decompositions. In this article, we give an alternative proof for the derived equivalence using tilting bundles. Our proof also shows the existence of a non-commutative crepant resolution of the singularity appearing in the flopping contraction. We also give some results on moduli spaces of finite-length modules over this non-commutative crepant resolution.
Key words: derived category; non-commutative crepant resolution; flop; tilting bundle.
pdf (424 kb)
tex (25 kb)
References
- Bondal A., Orlov D., Derived categories of coherent sheaves, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 47-56, arXiv:math.AG/0206295.
- Buchweitz R.O., Leuschke G.J., Van den Bergh M., Non-commutative desingularization of determinantal varieties I, Invent. Math. 182 (2010), 47-115, arXiv:0911.2659.
- Hara W., Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops, Adv. Math. 318 (2017), 355-410, arXiv:1704.07192.
- Hara W., On derived equivalence for Abuaf flop: mutation of non-commutative crepant resolutions and spherical twists, arXiv:1706.04417.
- Hara W., Deformation of tilting-type derived equivalences for crepant resolutions, Int. Math. Res. Not. 2020 (2020), 4062-4102, arXiv:1709.09948.
- Hille L., Van den Bergh M., Fourier-Mukai transforms, in Handbook of Tilting Theory, London Math. Soc. Lecture Note Ser., Vol. 332, Cambridge University Press, Cambridge, 2007, 147-177, arXiv:math.AG/0402043.
- Ito A., Miura M., Okawa S., Ueda K., Calabi-Yau complete intersections in exceptional Grassmannians, arXiv:1606.04076.
- Ito A., Miura M., Okawa S., Ueda K., The class of the affine line is a zero divisor in the Grothendieck ring: via $G_2$-Grassmannians, J. Algebraic Geom. 28 (2019), 245-250, arXiv:1606.04210.
- Iyama O., Wemyss M., Singular derived categories of $\mathbb{Q}$-factorial terminalizations and maximal modification algebras, Adv. Math. 261 (2014), 85-121, arXiv:1108.4518.
- Kanemitsu A., Mukai pairs and simple K-equivalence, arXiv:1812.05392.
- Karmazyn J., Quiver GIT for varieties with tilting bundles, Manuscripta Math. 154 (2017), 91-128, arXiv:1407.5005.
- Kawamata Y., $D$-equivalence and $K$-equivalence, J. Differential Geom. 61 (2002), 147-171, arXiv:math.AG/0205287.
- Kuznetsov A., Hyperplane sections and derived categories, Izv. Math. 70 (2006), 447-547, arXiv:math.AG/0503700.
- Kuznetsov A., Derived equivalence of Ito-Miura-Okawa-Ueda Calabi-Yau 3-folds, J. Math. Soc. Japan 70 (2018), 1007-1013, arXiv:1611.08386.
- Li D., On certain K-equivalent birational maps, Math. Z. 291 (2019), 959-969, arXiv:1701.04054.
- Namikawa Y., Mukai flops and derived categories, J. Reine Angew. Math. 560 (2003), 65-76, arXiv:math.AG/0203287.
- Ottaviani G., Spinor bundles on quadrics, Trans. Amer. Math. Soc. 307 (1988), 301-316.
- Ottaviani G., On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7) 4 (1990), 87-100.
- Segal E., A new 5-fold flop and derived equivalence, Bull. Lond. Math. Soc. 48 (2016), 533-538, arXiv:1506.06999.
- Toda Y., Uehara H., Tilting generators via ample line bundles, Adv. Math. 223 (2010), 1-29, arXiv:0804.4256.
- Ueda K., $G_2$-Grassmannians and derived equivalences, Manuscripta Math. 159 (2019), 549-559, arXiv:1612.08443.
- Van den Bergh M., Non-commutative crepant resolutions, in The Legacy of Niels Henrik Abel, Springer, Berlin, 2004, 749-770, arXiv:math.AG/0211064.
- Weyman J., Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, Vol. 149, Cambridge University Press, Cambridge, 2003.
- Weyman J., Zhao G., Noncommutative desingularization of orbit closures for some representations of ${\rm GL}_n$, arXiv:1204.0488.
|
|