|
SIGMA 17 (2021), 037, 31 pages arXiv:2003.01967
https://doi.org/10.3842/SIGMA.2021.037
Sobolev Lifting over Invariants
Adam Parusiński a and Armin Rainer b
a) Université Côte d'Azur, CNRS, LJAD, UMR 7351, 06108 Nice, France
b) Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
Received November 04, 2020, in final form March 29, 2021; Published online April 10, 2021
Abstract
We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$
be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map
$\overline{f} \colon {\mathbb R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$
is locally of Sobolev class $W^{1,p}$ for all $1 \le p$ < $d/(d-1)$. In the case $m=1$ there always exists
a continuous choice $\overline{f}$ for given $f\colon {\mathbb R} \to \sigma(V) \subseteq {\mathbb C}^n$.
We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms
of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev
regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.
Key words: Sobolev lifting over invariants; complex representations of finite groups; $Q$-valued Sobolev functions.
pdf (596 kb)
tex (38 kb)
References
- Almgren Jr. F.J., Almgren's big regularity paper: $Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Scientific Monograph Series in Mathematics, Vol. 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000.
- Chevalley C., Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- Dadok J., Kac V., Polar representations, J. Algebra 92 (1985), 504-524.
- De Lellis C., Spadaro E.N., $Q$-valued functions revisited, Mem. Amer. Math. Soc. 211 (2011), vi+79 pages, arXiv:0803.0060.
- Derksen H., Kemper G., Computational invariant theory, Encyclopaedia of Mathematical Sciences, Vol. 130, Springer-Verlag, Berlin, 2002.
- Ghisi M., Gobbino M., Higher order Glaeser inequalities and optimal regularity of roots of real functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), 1001-1021, arXiv:1107.2694.
- Grafakos L., Classical Fourier analysis, Graduate Texts in Mathematics, Vol. 249, Springer, New York, 2014.
- Kriegl A., Losik M., Michor P.W., Rainer A., Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory 16 (2006), 579-600, arXiv:math.RT/0504101.
- Losik M., Michor P.W., Rainer A., A generalization of Puiseux's theorem and lifting curves over invariants, Rev. Mat. Complut. 25 (2012), 139-155, arXiv:0904.2068.
- Luna D., Slices étales, Mém. Soc. Math. France 33 (1973), 81-105.
- Mukai S., An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, Vol. 81, Cambridge University Press, Cambridge, 2003.
- Neusel M.D., Smith L., Invariant theory of finite groups, Mathematical Surveys and Monographs, Vol. 94, Amer. Math. Soc., Providence, RI, 2002.
- Parusiński A., Rainer A., A new proof of Bronshtein's theorem, J. Hyperbolic Differ. Equ. 12 (2015), 671-688, arXiv:1309.2150.
- Parusiński A., Rainer A., Lifting differentiable curves from orbit spaces, Transform. Groups 21 (2016), 153-179, arXiv:1406.2485.
- Parusiński A., Rainer A., Regularity of roots of polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 481-517, arXiv:1309.2151.
- Parusiński A., Rainer A., Optimal Sobolev regularity of roots of polynomials, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), 1343-1387, arXiv:1506.01512.
- Parusiński A., Rainer A., Selections of bounded variation for roots of smooth polynomials, Selecta Math. (N.S.) 26 (2020), 13, 40 pages, arXiv:1705.10492.
- Schwarz G.W., Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37-135.
- Serre J.-P., Groupes finis d'automorphismes d'anneaux locaux réguliers, in Colloque d'Algèbre (Paris, 1967), Secrétariat mathématique, Paris, 1968, Exp. 8, 11 pages.
- Shephard G.C., Todd J.A., Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
- Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939.
|
|