|
SIGMA 17 (2021), 031, 27 pages arXiv:1912.06488
https://doi.org/10.3842/SIGMA.2021.031
Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases
Asmus K. Bisbo a, Hendrik De Bie b and Joris Van der Jeugt a
a) Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium
b) Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Krijgslaan 281-S8, B-9000 Gent, Belgium
Received June 30, 2020, in final form March 10, 2021; Published online March 25, 2021
Abstract
We study a particular class of infinite-dimensional representations of $\mathfrak{osp}(1|2n)$. These representations $L_n(p)$ are characterized by a positive integer $p$, and are the lowest component in the $p$-fold tensor product of the metaplectic representation of $\mathfrak{osp}(1|2n)$. We construct a new polynomial basis for $L_n(p)$ arising from the embedding $\mathfrak{osp}(1|2np) \supset \mathfrak{osp}(1|2n)$. The basis vectors of $L_n(p)$ are labelled by semi-standard Young tableaux, and are expressed as Clifford algebra valued polynomials with integer coefficients in $np$ variables. Using combinatorial properties of these tableau vectors it is deduced that they form indeed a basis. The computation of matrix elements of a set of generators of $\mathfrak{osp}(1|2n)$ on these basis vectors requires further combinatorics, such as the action of a Young subgroup on the horizontal strips of the tableau.
Key words: representation theory; Lie superalgebras; Young tableaux; Clifford analysis; parabosons.
pdf (518 kb)
tex (34 kb)
References
- Blank J., Havlívcek M., Irreducible $\ast$-representations of Lie superalgebras $B(0,n)$ with finite-degenerated vacuum, J. Math. Phys. 27 (1986), 2823-2831.
- Chaturvedi S., Canonical partition functions for parastatistical systems of any order, Phys. Rev. E 54 (1996), 1378-1382, arXiv:hep-th/9509150.
- Cheng S.-J., Kwon J.-H., Wang W., Kostant homology formulas for oscillator modules of Lie superalgebras, Adv. Math. 224 (2010), 1548-1588, arXiv:0901.0247.
- Cheng S.-J., Wang W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, Vol. 144, Amer. Math. Soc., Providence, RI, 2012.
- Cheng S.-J., Zhang R.B., Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras, Adv. Math. 182 (2004), 124-172, arXiv:math.RT/0206036.
- Colombo F., Sabadini I., Sommen F., Struppa D.C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser Boston, Inc., Boston, MA, 2004.
- Deser S., Zumino B., Broken supersymmetry and supergravity, Phys. Rev. Lett. 38 (1977), 1433-1436.
- Dobrev V., Salom I., Positive energy unitary irreducible representations of the superalgebras ${\mathfrak{osp}}(1|2n,\mathbb{R})$ and character formulae, in Proceedings of 8th Mathematical Physics Meeting, Summer School and Conference on Modern Mathematical Physics (Belgrade, August 24-31, 2014), Belgrade Inst. Phys., 2015, 59-81, arXiv:1506.02272.
- Dobrev V.K., Zhang R.B., Positive energy unitary irreducible representations of the superalgebras ${\mathfrak{osp}}(1|2n,\mathbb R)$, Phys. Atomic Nuclei 68 (2005), 1660-1669, arXiv:hep-th/0402039.
- Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000.
- Ganchev A.Ch., Palev T.D., A Lie superalgebraic interpretation of the para-Bose statistics, J. Math. Phys. 21 (1980), 797-799.
- Green H.S., A generalized method of field quantization, Phys. Rev. 90 (1953), 270-273.
- Greenberg O.W., Macrae K.I., Locally gauge-invariant formulation of parastatistics, Nuclear Phys. B 219 (1983), 358-366.
- Greenberg O.W., Messiah A.M.L., Selection rules for parafields and the absence of para particles in nature, Phys. Rev. 138 (1965), B1155-B1167.
- Iachello F., Van Isacker P., The interacting boson-fermion model, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1991.
- Ivanov E.A., Sorin A.S., Superfield formulation of ${\rm OSp}(1,4)$ supersymmetry, J. Phys. A: Math. Gen. 13 (1980), 1159-1188.
- Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
- Kanakoglou K., Daskaloyannis C., A braided look at Green ansatz for parabosons, J. Math. Phys. 48 (2007), 113516, 19 pages, arXiv:0901.4320.
- King R.C., Palev T.D., Stoilova N.I., Van der Jeugt J., The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator, J. Phys. A: Math. Gen. 36 (2003), 4337-4362, arXiv:hep-th/0304136.
- Lávička R., Souček V., Fischer decomposition for spinor valued polynomials in several variables, arXiv:1708.01426.
- Lievens S., Stoilova N.I., Van der Jeugt J., Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system, J. Math. Phys. 47 (2006), 113504, 23 pages, arXiv:hep-th/0606192.
- Lievens S., Stoilova N.I., Van der Jeugt J., The paraboson Fock space and unitary irreducible representations of the Lie superalgebra ${\mathfrak{osp}}(1|2n)$, Comm. Math. Phys. 281 (2008), 805-826, arXiv:0706.4196.
- Loday J.-L., Popov T., Parastatistics algebra, Young tableaux and the super plactic monoid, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1295-1314, arXiv:0810.0844.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
- Molev A.I., Gelfand-Tsetlin bases for classical Lie algebras, in Handbook of Algebra, Handb. Algebr., Vol. 4, Elsevier/North-Holland, Amsterdam, 2006, 109-170, arXiv:math.RT/0211289.
- Nishiyama K., Oscillator representations for orthosymplectic algebras, J. Algebra 129 (1990), 231-262.
- Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, University of Tokyo Press, Tokyo, Springer-Verlag, Berlin, 1982.
- Salom I., Role of the orthogonal group in construction of ${\mathfrak{osp}}(1\vert 2n)$ representations, arXiv:1307.1452.
- Sezgin E., Sundell P., Supersymmetric higher spin theories, J. Phys. A: Math. Theor. 46 (2013), 214022, 25 pages, arXiv:1208.6019.
- Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.
- Vasiliev M.A., Conformal higher spin symmetries of 4D massless supermultiplets and ${\mathfrak{osp}}(L,2M)$ invariant equations in generalized (super)space, Phys. Rev. D 66 (2002), 066006, 34 pages, arXiv:hep-th/0106149.
|
|