Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 023, 31 pages      arXiv:2006.15119      https://doi.org/10.3842/SIGMA.2021.023

Twisted-Austere Submanifolds in Euclidean Space

Thomas A. Ivey a and Spiro Karigiannis b
a) Department of Mathematics, College of Charleston, USA
b) Department of Pure Mathematics, University of Waterloo, Canada

Received October 13, 2020, in final form March 02, 2021; Published online March 10, 2021; Misprints fixed March 12, 2021

Abstract
A twisted-austere $k$-fold $(M, \mu)$ in ${\mathbb R}^n$ consists of a $k$-dimensional submanifold $M$ of ${\mathbb R}^n$ together with a closed $1$-form $\mu$ on $M$, such that the second fundamental form $A$ of $M$ and the $1$-form $\mu$ satisfy a particular system of coupled nonlinear second order PDE. Given such an object, the ''twisted conormal bundle'' $N^* M + \mu$ is a special Lagrangian submanifold of ${\mathbb C}^n$. We review the twisted-austere condition and give an explicit example. Then we focus on twisted-austere 3-folds. We give a geometric description of all solutions when the ''base'' $M$ is a cylinder, and when $M$ is austere. Finally, we prove that, other than the case of a generalized helicoid in ${\mathbb R}^5$ discovered by Bryant, there are no other possibilities for the base $M$. This gives a complete classification of twisted-austere $3$-folds in ${\mathbb R}^n$.

Key words: calibrated geometry; special Lagrangian submanifolds; austere submanifolds; exterior differential systems.

pdf (563 kb)   tex (37 kb)       [previous version:  pdf (564 kb)   tex (37 kb)]

References

  1. Borisenko A., Ruled special Lagrangian surfaces, in Minimal Surfaces, Adv. Soviet Math., Vol. 15, Amer. Math. Soc., Providence, RI, 1993, 269-285.
  2. Bryant R.L., Some remarks on the geometry of austere manifolds, Bol. Soc. Brasil. Mat. (N.S.) 21 (1991), 133-157.
  3. Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems, Mathematical Sciences Research Institute Publications, Vol. 18, Springer-Verlag, New York, 1991.
  4. Chen B.-Y., Riemannian submanifolds, in Handbook of Differential Geometry, Vol. I, North-Holland, Amsterdam, 2000, 187-418.
  5. Harvey R., Lawson Jr. H.B., Calibrated geometries, Acta Math. 148 (1982), 47-157.
  6. Ionel M., Ivey T., Austere submanifolds of dimension four: examples and maximal types, Illinois J. Math. 54 (2010), 713-746, arXiv:0906.4477.
  7. Ionel M., Ivey T., Ruled austere submanifolds of dimension four, Differential Geom. Appl. 30 (2012), 588-603, arXiv:1011.4961.
  8. Ionel M., Karigiannis S., Min-Oo M., Bundle constructions of calibrated submanifolds in ${\mathbb R}^7$ and ${\mathbb R}^8$, Math. Res. Lett. 12 (2005), 493-512, arXiv:math.DG/0408005.
  9. Joyce D., Ruled special Lagrangian 3-folds in $\mathbb C^3$, Proc. London Math. Soc. 85 (2002), 233-256, arXiv:math.DG/0012060.
  10. Joyce D., Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, Vol. 12, Oxford University Press, Oxford, 2007.
  11. Karigiannis S., Leung N.C.-H., Deformations of calibrated subbundles of Euclidean spaces via twisting by special sections, Ann. Global Anal. Geom. 42 (2012), 371-389, arXiv:1108.6090.
  12. Strominger A., Yau S.-T., Zaslow E., Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), 243-259, arXiv:hep-th/9606040.

Previous article  Next article  Contents of Volume 17 (2021)