|
SIGMA 17 (2021), 020, 21 pages arXiv:2005.14225
https://doi.org/10.3842/SIGMA.2021.020
Contribution to the Special Issue on Noncommutative Manifolds and their Symmetries in honour of Giovanni Landi
A Spectral Triple for a Solenoid Based on the Sierpinski Gasket
Valeriano Aiello a, Daniele Guido b and Tommaso Isola b
a) Mathematisches Institut, Universität Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland
b) Dipartimento di Matematica, Università di Roma ''Tor Vergata'', I-00133 Roma, Italy
Received June 23, 2020, in final form February 10, 2021; Published online March 02, 2021
Abstract
The Sierpinski gasket admits a locally isometric ramified self-covering. A semifinite spectral triple is constructed on the resulting solenoidal space, and its main geometrical features are discussed.
Key words: self-similar fractals; noncommutative geometry; ramified coverings.
pdf (503 kb)
tex (47 kb)
References
- Aiello V., Guido D., Isola T., Spectral triples for noncommutative solenoidal spaces from self-coverings, J. Math. Anal. Appl. 448 (2017), 1378-1412, arXiv:1604.08619.
- Aiello V., Guido D., Isola T., Spectral triples on irreversible $C^*$-dynamical systems, arXiv:2102.05392.
- Arauza Rivera A., Spectral triples for the variants of the Sierpiński gasket, J. Fractal Geom. 6 (2019), 205-246, arXiv:1709.00755.
- Atiyah M.F., Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32-33 (1976), 43-72.
- Barlow M.T., Perkins E.A., Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), 543-623.
- Bellissard J.V., Marcolli M., Reihani K., Dynamical systems on spectral metric spaces, arXiv:1008.4617.
- Berestovskii V., Plaut C., Uniform universal covers of uniform spaces, Topology Appl. 154 (2007), 1748-1777, arXiv:math.AG/0607353.
- Carey A., Phillips J., Unbounded Fredholm modules and spectral flow, Canad. J. Math. 50 (1998), 673-718.
- Carey A., Phillips J., Sukochev F., Spectral flow and Dixmier traces, Adv. Math. 173 (2003), 68-113, arXiv:math.OA/0205076.
- Christensen E., Ivan C., Sums of two-dimensional spectral triples, Math. Scand. 100 (2007), 35-60, arXiv:math.OA/0601024.
- Christensen E., Ivan C., Lapidus M.L., Dirac operators and spectral triples for some fractal sets built on curves, Adv. Math. 217 (2008), 42-78, arXiv:math.MG/0610222.
- Christensen E., Ivan C., Schrohe E., Spectral triples and the geometry of fractals, J. Noncommut. Geom. 6 (2012), 249-274, arXiv:1002.3081.
- Cipriani F., Guido D., Isola T., A $C^*$-algebra of geometric operators on self-similar CW-complexes. Novikov-Shubin and $L^2$-Betti numbers, J. Funct. Anal. 256 (2009), 603-634, arXiv:math.OA/0607603.
- Cipriani F., Guido D., Isola T., Sauvageot J.-L., Integrals and potentials of differential 1-forms on the Sierpinski gasket, Adv. Math. 239 (2013), 128-163, arXiv:1105.1995.
- Cipriani F., Guido D., Isola T., Sauvageot J.-L., Spectral triples for the Sierpinski gasket, J. Funct. Anal. 266 (2014), 4809-4869, arXiv:1112.6401.
- Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
- Cuntz J., The internal structure of simple $C^{\ast} $-algebras, in Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., Vol. 38, Amer. Math. Soc., Providence, R.I., 1982, 85-115.
- Deeley R.J., Goffeng M., Mesland B., Whittaker M.F., Wieler solenoids, Cuntz-Pimsner algebras and $K$-theory, Ergodic Theory Dynam. Systems 38 (2018), 2942-2988, arXiv:1606.05449.
- Dixmier J., Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1107-A1108.
- Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, arXiv:hep-th/0303037.
- Fack T., Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), 307-333.
- Fack T., Kosaki H., Generalized $s$-numbers of $\tau$-measurable operators, Pacific J. Math. 123 (1986), 269-300.
- Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001.
- Guido D., Isola T., Singular traces on semifinite von Neumann algebras, J. Funct. Anal. 134 (1995), 451-485.
- Guido D., Isola T., Noncommutative Riemann integration and Novikov-Shubin invariants for open manifolds, J. Funct. Anal. 176 (2000), 115-152, arXiv:math.OA/9802015.
- Guido D., Isola T., A semicontinuous trace for almost local operators on an open manifold, Internat. J. Math. 12 (2001), 1087-1102, arXiv:math.DG/0110294.
- Guido D., Isola T., Dimensions and singular traces for spectral triples, with applications to fractals, J. Funct. Anal. 203 (2003), 362-400, arXiv:math.OA/0202108.
- Guido D., Isola T., Dimensions and spectral triples for fractals in ${\mathbb R}^N$, in Advances in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math., Vol. 5, Theta, Bucharest, 2005, 89-108, arXiv:math.OA/0404295.
- Guido D., Isola T., Spectral triples for nested fractals, J. Noncommut. Geom. 11 (2017), 1413-1436, arXiv:1601.08208.
- Hawkins A., Skalski A., White S., Zacharias J., On spectral triples on crossed products arising from equicontinuous actions, Math. Scand. 113 (2013), 262-291, arXiv:1103.6199.
- Higson N., Roe J., Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
- Kigami J., Analysis on fractals, Cambridge Tracts in Mathematics, Vol. 143, Cambridge University Press, Cambridge, 2001.
- Kigami J., Lapidus M.L., Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys. 217 (2001), 165-180.
- Lapidus M., Sarhad J., Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets, J. Noncommut. Geom. 8 (2014), 947-985, arXiv:1212.0878.
- Lapidus M.L., Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions, Topol. Methods Nonlinear Anal. 4 (1994), 137-195.
- Lapidus M.L., Towards a noncommutative fractal geometry? Laplacians and volume measures on fractals, in Harmonic Analysis and Nonlinear Differential Equations (Riverside, CA, 1995), Contemp. Math., Vol. 208, Amer. Math. Soc., Providence, RI, 1997, 211-252.
- Latrémolière F., Packer J., Noncommutative solenoids and the Gromov-Hausdorff propinquity, Proc. Amer. Math. Soc. 145 (2017), 2043-2057, arXiv:1601.02707.
- McCord M.C., Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197-209.
- Nekrashevych V., Self-similar groups, Mathematical Surveys and Monographs, Vol. 117, Amer. Math. Soc., Providence, RI, 2005.
- Paterson A.L.T., Contractive spectral triples for crossed products, Math. Scand. 114 (2014), 275-298, arXiv:1204.4404.
- Rieffel M.A., Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215-229, arXiv:math.OA/9807084.
- Roe J., An index theorem on open manifolds. I, J. Differential Geom. 27 (1988), 87-113.
- Roe J., An index theorem on open manifolds. II, J. Differential Geom. 27 (1988), 115-136.
- Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, Vol. 90, Amer. Math. Soc., Providence, RI, 1996.
- Roe J., Lectures on coarse geometry, University Lecture Series, Vol. 31, Amer. Math. Soc., Providence, RI, 2003.
- Ruan H.-J., Strichartz R.S., Covering maps and periodic functions on higher dimensional Sierpinski gaskets, Canad. J. Math. 61 (2009), 1151-1181.
- Sierpiński R.S., Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris 160 (1915), 302-305.
- Strichartz R.S., Fractals in the large, Canad. J. Math. 50 (1998), 638-657.
- Strichartz R.S., Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc. 355 (2003), 4019-4043.
- Strichartz R.S., Periodic and almost periodic functions on infinite Sierpinski gaskets, Canad. J. Math. 61 (2009), 1182-1200.
- Teplyaev A., Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal. 159 (1998), 537-567.
- Willett R., Yu G., Higher index theory, Cambridge Studies in Advanced Mathematics, Vol. 189, Cambridge University Press, Cambridge, 2020.
|
|