|
SIGMA 17 (2021), 011, 25 pages arXiv:2102.02477
https://doi.org/10.3842/SIGMA.2021.011
Invariant Dirac Operators, Harmonic Spinors, and Vanishing Theorems in CR Geometry
Felipe Leitner
Universität Greifswald, Institut für Mathematik und Informatik,Walter-Rathenau-Str. 47, D-17489 Greifswald, Germany
Received July 23, 2020, in final form January 22, 2021; Published online February 04, 2021
Abstract
We study Kohn-Dirac operators $D_\theta$ on strictly pseudoconvex CR manifolds with ${\rm spin}^{\mathbb C}$ structure of weight $\ell\in{\mathbb Z}$. Certain components of $D_\theta$ are CR invariants. We also derive CR invariant twistor operators of weight $\ell$. Harmonic spinors correspond to cohomology classes of some twisted Kohn-Rossi complex. Applying a Schrödinger-Lichnerowicz-type formula, we prove vanishing theorems for harmonic spinors and (twisted) Kohn-Rossi groups. We also derive obstructions to positive Webster curvature.
Key words: CR geometry; spin geometry; Kohn-Dirac operator; harmonic spinors; Kohn-Rossi cohomology; vanishing theorems.
pdf (454 kb)
tex (29 kb)
References
- Blair D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Vol. 509, Springer-Verlag, Berlin - New York, 1976.
- Čap A., Gover A.R., CR-tractors and the Fefferman space, Indiana Univ. Math. J. 57 (2008), 2519-2570 arXiv:math.DG/0611938.
- Case J.S., Yang P., A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), 285-322, arXiv:1309.2528.
- Folland G.B., Kohn J.J., The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, Vol. 75, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1972.
- Hitchin N., Harmonic spinors, Adv. Math. 14 (1974), 1-55.
- Jerison D., Lee J.M., The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167-197.
- Kohn J.J., Boundaries of complex manifolds, in Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 81-94.
- Kohn J.J., Rossi H., On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81 (1965), 451-472.
- Kordyukov Y.A., Vanishing theorem for transverse Dirac operators on Riemannian foliations, Ann. Global Anal. Geom. 34 (2008), 195-211, arXiv:0708.1698.
- Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- Lee J.M., Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157-178.
- Leitner F., The first eigenvalue of the Kohn-Dirac operator on CR manifolds, Differential Geom. Appl. 61 (2018), 97-132.
- Leitner F., Parallel spinors and basic holonomy in pseudo-Hermitian geometry, Ann. Global Anal. Geom. 55 (2019), 181-196.
- Lichnerowicz A., Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7-9.
- Michelsohn M.L., Clifford and spinor cohomology of Kähler manifolds, Amer. J. Math. 102 (1980), 1083-1146.
- Morgan J.W., The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, Vol. 44, Princeton University Press, Princeton, NJ, 1996.
- Moroianu A., On Kirchberg's inequality for compact Kähler manifolds of even complex dimension, Ann. Global Anal. Geom. 15 (1997), 235-242.
- Petit R., ${\rm Spin}^c$-structures and Dirac operators on contact manifolds, Differential Geom. Appl. 22 (2005), 229-252.
- Pilca M., Kählerian twistor spinors, Math. Z. 268 (2011), 223-255, arXiv:0812.3315.
- Stadtmüller C., Horizontal Dirac operators in CR geometry, Ph.D. Thesis, Humboldt University Berlin, 2017, available at https://edoc.hu-berlin.de/handle/18452/18801.
- Tanaka N., A differential geometric study on strongly pseudo-convex manifolds, Lectures in Mathematics, Vol. 9, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975.
- Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry 13 (1978), 25-41.
|
|