Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 010, 25 pages      arXiv:2006.00627      https://doi.org/10.3842/SIGMA.2021.010
Contribution to the Special Issue on Cluster Algebras

$C$-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type

Su Ji Hong
Department of Mathematics, University of Nebraska-Lincoln, USA

Received June 01, 2020, in final form January 17, 2021; Published online February 01, 2021

Abstract
Let $Q$ be an acyclic quiver and $k$ be an algebraically closed field. The indecomposable exceptional modules of the path algebra $kQ$ have been widely studied. The real Schur roots of the root system associated to $Q$ are the dimension vectors of the indecomposable exceptional modules. It has been shown in [Nájera Chávez A., Int. Math. Res. Not. 2015 (2015), 1590-1600] that for acyclic quivers, the set of positive $c$-vectors and the set of real Schur roots coincide. To give a diagrammatic description of $c$-vectors, K-H. Lee and K. Lee conjectured that for acyclic quivers, the set of $c$-vectors and the set of roots corresponding to non-self-crossing admissible curves are equivalent as sets [Exp. Math., to appear, arXiv:1703.09113]. In [Adv. Math. 340 (2018), 855-882], A. Felikson and P. Tumarkin proved this conjecture for 2-complete quivers. In this paper, we prove a revised version of Lee-Lee conjecture for acyclic quivers of type $A$, $D$, and $E_{6}$ and $E_7$.

Key words: real Schur roots; $c$-vectors; acyclic quivers; non-self-crossing curves.

pdf (649 kb)   tex (352 kb)  

References

  1. Bourbaki N., Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
  2. Caldero P., Keller B., From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), 983-1009, arXiv:math.RT/0510251.
  3. Derksen H., Weyman J., Zelevinsky A., Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749-790, arXiv:0904.0676.
  4. Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, Vol. 49, Princeton University Press, Princeton, NJ, 2012.
  5. Felikson A., Tumarkin P., Acyclic cluster algebras, reflection groups, and curves on a punctured disc, Adv. Math. 340 (2018), 855-882, arXiv:1709.10360.
  6. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, arXiv:math.RA/0608367.
  7. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
  8. Garver A., McConville T., Serhiyenko K., Minimal length maximal green sequences, Adv. in Appl. Math. 96 (2018), 76-138, arXiv:1702.07313.
  9. Hubery A., Krause H., A categorification of non-crossing partitions, J. Eur. Math. Soc. (JEMS) 18 (2016), 2273-2313, arXiv:1310.1907.
  10. Igusa K., Schiffler R., Exceptional sequences and clusters, J. Algebra 323 (2010), 2183-2202, arXiv:0901.2590.
  11. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  12. Lee K., Personal communication.
  13. Lee K.-H., Lee K., A correspondence between rigid modules over path algebras and simple curves on Riemann surfaces, Exp. Math., to appear, arXiv:1703.09113.
  14. Nájera Chávez A., On the $c$-vectors of an acyclic cluster algebra, Int. Math. Res. Not. 2015 (2015), 1590-1600, arXiv:1203.1415.
  15. Nakanishi T., Stella S., Diagrammatic description of $c$-vectors and $d$-vectors of cluster algebras of finite type, Electron. J. Combin. 21 (2014), Paper 1.3, 107 pages, arXiv:1210.6299.
  16. Schiffler R., Quiver representations, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2014.
  17. Schofield A., General representations of quivers, Proc. London Math. Soc. 65 (1992), 46-64.

Previous article  Next article  Contents of Volume 17 (2021)