|
SIGMA 17 (2021), 009, 38 pages arXiv:2003.09666
https://doi.org/10.3842/SIGMA.2021.009
Double Lowering Operators on Polynomials
Paul Terwilliger
Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Received September 15, 2020, in final form January 19, 2021; Published online January 28, 2021
Abstract
Recently Sarah Bockting-Conrad introduced the double lowering operator $\psi$ for a tridiagonal pair. Motivated by $\psi$ we consider the following problem about polynomials. Let $\mathbb F$ denote an algebraically closed field. Let $x$ denote an indeterminate, and let $\mathbb F\lbrack x \rbrack$ denote the algebra consisting of the polynomials in $x$ that have all coefficients in $\mathbb F$. Let $N$ denote a positive integer or $\infty$. Let $\lbrace a_i\rbrace_{i=0}^{N-1}$, $\lbrace b_i\rbrace_{i=0}^{N-1}$ denote scalars in $\mathbb F$ such that $\sum_{h=0}^{i-1} a_h \not= \sum_{h=0}^{i-1} b_h$ for $1 \leq i \leq N$. For $0 \leq i \leq N$ define polynomials $\tau_i, \eta_i \in \mathbb F\lbrack x \rbrack$ by $\tau_i = \prod_{h=0}^{i-1} (x-a_h)$ and $\eta_i = \prod_{h=0}^{i-1} (x-b_h)$. Let $V$ denote the subspace of $\mathbb F\lbrack x \rbrack$ spanned by $\lbrace x^i\rbrace_{i=0}^N$. An element $\psi \in \operatorname{End}(V)$ is called double lowering whenever $\psi \tau_i \in \mathbb F \tau_{i-1}$ and $\psi \eta_i \in \mathbb F \eta_{i-1}$ for $0 \leq i \leq N$, where $\tau_{-1}=0$ and $\eta_{-1}=0$. We give necessary and sufficient conditions on $\lbrace a_i\rbrace_{i=0}^{N-1}$, $\lbrace b_i\rbrace_{i=0}^{N-1}$ for there to exist a nonzero double lowering map. There are four families of solutions, which we describe in detail.
Key words: tridiagonal pair; $q$-exponential function; basic hypergeometric series; $q$-binomial theorem.
pdf (599 kb)
tex (35 kb)
References
- Alnajjar H., Leonard pairs associated with the equitable generators of the quantum algebra $U_q(\mathfrak{sl}_2)$, Linear Multilinear Algebra 59 (2011), 1127-1142.
- Alnajjar H., Curtin B., A family of tridiagonal pairs related to the quantum affine algebra $U_q(\widehat{\mathfrak{sl}_2})$, Electron. J. Linear Algebra 13 (2005), 1-9.
- Askey R., Wilson J., A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols, SIAM J. Math. Anal. 10 (1979), 1008-1016.
- Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
- Baseilhac P., An integrable structure related with tridiagonal algebras, Nuclear Phys. B 705 (2005), 605-619, arXiv:math-ph/0408025.
- Baseilhac P., The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach, Nuclear Phys. B 754 (2006), 309-328, arXiv:math-ph/0604036.
- Bockting-Conrad S., Two commuting operators associated with a tridiagonal pair, Linear Algebra Appl. 437 (2012), 242-270, arXiv:1110.3434.
- Bockting-Conrad S., Tridiagonal pairs of $q$-Racah type, the double lowering operator $\psi$, and the quantum algebra $U_q(\mathfrak{sl}_2)$, Linear Algebra Appl. 445 (2014), 256-279, arXiv:1307.7410.
- Bockting-Conrad S., Some $q$-exponential formulas involving the double lowering operator $\psi$ for a tridiagonal pair, arXiv:1907.01157.
- Bockting-Conrad S., Terwilliger P., The algebra $U_q(\mathfrak{sl}_2)$ in disguise, Linear Algebra Appl. 459 (2014), 548-585, arXiv:1307.7572.
- Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 18, Springer-Verlag, Berlin, 1989.
- Date E., Roan S., The structure of quotients of the Onsager algebra by closed ideals, J. Phys. A: Math. Gen. 33 (2000), 3275-3296, arXiv:math.QA/9911018.
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
- Granovskii Ya.I., Lutzenko I.M., Zhedanov A.S., Mutual integrability, quadratic algebras, and dynamical symmetry, Ann. Physics 217 (1992), 1-20.
- Hartwig B., The tetrahedron algebra and its finite-dimensional irreducible modules, Linear Algebra Appl. 422 (2007), 219-235, arXiv:math.RT/0606197.
- Hartwig B., Terwilliger P., The tetrahedron algebra, the Onsager algebra, and the $\mathfrak{sl}_2$ loop algebra, J. Algebra 308 (2007), 840-863, arXiv:math-ph/0511004.
- Ito T., Tanabe K., Terwilliger P., Some algebra related to $P$- and $Q$-polynomial association schemes, in Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 56, Amer. Math. Soc., Providence, RI, 2001, 167-192, arXiv:math.CO/0406556.
- Ito T., Terwilliger P., Tridiagonal pairs and the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$, Ramanujan J. 13 (2007), 39-62, arXiv:math.QA/0310042.
- Ito T., Terwilliger P., Tridiagonal pairs of Krawtchouk type, Linear Algebra Appl. 427 (2007), 218-233, arXiv:0706.1065.
- Ito T., Terwilliger P., Two non-nilpotent linear transformations that satisfy the cubic $q$-Serre relations, J. Algebra Appl. 6 (2007), 477-503, arXiv:math.QA/0508398.
- Ito T., Terwilliger P., Finite-dimensional irreducible modules for the three-point $\mathfrak{sl}_2$ loop algebra, Comm. Algebra 36 (2008), 4557-4598, arXiv:0707.2313.
- Ito T., Terwilliger P., Tridiagonal pairs of $q$-Racah type, J. Algebra 322 (2009), 68-93, arXiv:0807.0271.
- Ito T., Terwilliger P., The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), 81-144, arXiv:0904.2889.
- Ito T., Terwilliger P., Weng C., The quantum algebra $U_q(\mathfrak{sl}_2)$ and its equitable presentation, J. Algebra 298 (2006), 284-301, arXiv:math.QA/0507477.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
- Miki K., Finite dimensional modules for the $q$-tetrahedron algebra, Osaka J. Math. 47 (2010), 559-589.
- Nomura K., Terwilliger P., Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs, Linear Algebra Appl. 437 (2012), 345-375, arXiv:1201.1645.
- Nomura K., Terwilliger P., Totally bipartite tridiagonal pairs, arXiv:1711.00332.
- Terwilliger P., The subconstituent algebra of an association scheme. I, J. Algebraic Combin. 1 (1992), 363-388.
- Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
- Terwilliger P., Two relations that generalize the $q$-Serre relations and the Dolan-Grady relations, in Physics and Combinatorics 1999 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 377-398, arXiv:math.QA/0307016.
- Terwilliger P., Leonard pairs and the $q$-Racah polynomials, Linear Algebra Appl. 387 (2004), 235-276, arXiv:math.QA/0306301.
- Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005), 307-332, arXiv:math.RA/0306291.
- Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330, arXiv:math.QA/0408390.
- Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
- Terwilliger P., The universal Askey-Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$, SIGMA 7 (2011), 099, 26 pages, arXiv:1107.3544.
- Terwilliger P., The $q$-Onsager algebra and the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$, Linear Algebra Appl. 521 (2017), 19-56, arXiv:1506.08666.
- Terwilliger P., The $q$-Onsager algebra and the universal Askey-Wilson algebra, SIGMA 14 (2018), 044, 18 pages, arXiv:1801.06083.
- Terwilliger P., Tridiagonal pairs of $q$-Racah type, the Bockting operator $\psi$, and $L$-operators for $U_q(L(\mathfrak{sl}_2))$, Ars Math. Contemp. 14 (2018), 55-65, arXiv:1608.07613.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
- Vidunas R., Simultaneously lowering operators, RIMS Kōkyūroku 1593 (2008), 78-86.
- Zhedanov A.S., ''Hidden symmetry'' of Askey-Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146-1157.
|
|