|
SIGMA 17 (2021), 002, 25 pages arXiv:2007.05707
https://doi.org/10.3842/SIGMA.2021.002
A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants
Sofia Tarricone ab
a) LAREMA, UMR 6093, UNIV Angers, CNRS, SFR Math-Stic, France
b) Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, Québec, Canada, H3G 1M8
Received July 25, 2020, in final form December 31, 2020; Published online January 05, 2021
Abstract
We consider Fredholm determinants of matrix Hankel operators associated to matrix versions of the $n$-th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painlevé II hierarchy, defined through a matrix-valued version of the Lenard operators. In particular, the Riemann-Hilbert techniques used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitly written in terms of the matrix-valued Lenard operators and some solutions of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy Hankel operators.
Key words: Painlevé II hierarchy; Airy Hankel operator; Riemann-Hilbert problem; Lax pairs.
pdf (475 kb)
tex (30 kb)
References
- Baik J., Deift P., Suidan T., Combinatorics and random matrix theory, Graduate Studies in Mathematics, Vol. 172, Amer. Math. Soc., Providence, RI, 2016.
- Basor E.L., Widom H., Determinants of Airy operators and applications to random matrices, J. Statist. Phys. 96 (1999), 1-20, arXiv:math.FA/9812043.
- Bertola M., The dependence on the monodromy data of the isomonodromic tau function, Comm. Math. Phys. 294 (2010), 539-579, arXiv:0902.4716.
- Bertola M., Cafasso M., Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation, Comm. Math. Phys. 309 (2012), 793-833, arXiv:1101.3997.
- Cafasso M., Claeys T., Girotti M., Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes, Int. Math. Res. Not., to appear, arXiv:1902.05595.
- Clarkson P.A., Joshi N., Mazzocco M., The Lax pair for the mKdV hierarchy, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 53-64.
- Clarkson P.A., McLeod J.B., A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (1988), 97-138.
- Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
- Gordoa P.R., Pickering A., Zhu Z.N., On matrix Painlevé hierarchies, J. Differential Equations 261 (2016), 1128-1175.
- Hastings S.P., McLeod J.B., A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), 31-51.
- Its A.R., Large $N$ asymptotics in random matrices: the Riemann-Hilbert approach, in Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 351-413.
- Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A., Differential equations for quantum correlation functions, Internat. J. Modern Phys. B 4 (1990), 1003-1037.
- Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
- Johansson K., Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), 437-476, arXiv:math.CO/9903134.
- Johansson K., Random matrices and determinantal processes, in Mathematical Statistical Physics, Elsevier B. V., Amsterdam, 2006, 1-55, arXiv:math-ph/0510038.
- Le Doussal P., Majumdar S.N., Schehr G., Multicritical edge statistics for the momenta of fermions in nonharmonic traps, Phys. Rev. Lett. 121 (2018), 030603, 7 pages, arXiv:1802.06436.
- Miura R.M., Lange C.G., Particular solutions of forced generalized Airy equations, J. Math. Anal. Appl. 109 (1985), 303-310.
- Olver P.J., Sokolov V.V., Integrable evolution equations on associative algebras, Comm. Math. Phys. 193 (1998), 245-268.
- Olver P.J., Wang J.P., Classification of integrable one-component systems on associative algebras, Proc. London Math. Soc. 81 (2000), 566-586.
- Retakh V., Rubtsov V., Noncommutative Toda chains, Hankel quasideterminants and the Painlevé II equation, J. Phys. A: Math. Theor. 43 (2010), 505204, 13 pages, arXiv:1007.4168.
- Soshnikov A., Determinantal random point fields, Russian Math. Surveys 55 (2000), 923-975, arXiv:math.PR/0002099.
- Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, arXiv:hep-th/9211141.
- Tracy C.A., Widom H., Distribution functions for largest eigenvalues and their applications, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 587-596, arXiv:math-ph/0210034.
|
|