|
SIGMA 16 (2020), 144, 13 pages arXiv:2009.01585
https://doi.org/10.3842/SIGMA.2020.144
Solitons of Some Nonlinear Sigma-Like Models
V.E. Vekslerchik
Usikov Institute for Radiophysics and Electronics, 12 Proskura Str., Kharkiv, 61085, Ukraine
Received September 04, 2020, in final form November 30, 2020; Published online December 25, 2020
Abstract
We present a set of differential identities for some class of matrices. These identities are used to derive the $N$-soliton solutions for the Pohlmeyer nonlinear sigma-model, two-dimensional self-dual Yang-Mills equations and some modification of the vector Calapso equation.
Key words: nonlinear sigma-models; vector Calapso equation; self-dual Yang-Mills equations; explicit solutions; solitons.
pdf (356 kb)
tex (20 kb)
References
- Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations, J. Math. Phys. 16 (1975), 598-603.
- Barashenkov I.V., Getmanov B.S., Multisoliton solutions in the scheme for unified description of integrable relativistic massive fields. Nondegenerate ${\mathfrak{sl}}(2,{\mathbb C})$ case, Comm. Math. Phys. 112 (1987), 423-446.
- Carillo S., Schiebold C., Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: noncommutative soliton solutions, J. Math. Phys. 52 (2011), 053507, 21 pages.
- Dimakis A., Müller-Hoissen F., Bidifferential calculus approach to AKNS hierarchies and their solutions, SIGMA 6 (2010), 055, 27 pages, arXiv:1004.1627.
- Dimakis A., Müller-Hoissen F., Solutions of matrix NLS systems and their discretizations: a unified treatment, Inverse Problems 26 (2010), 095007, 55 pages, arXiv:1001.0133.
- Fu W., Nijhoff F.W., Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations, Proc. A. 473 (2017), 20160195, 22 pages.
- Gekhtman M., Kasman A., Integrable systems and rank-one conditions for rectangular matrices, Theoret. and Math. Phys. 133 (2002), 1498-1503, arXiv:math-ph/0408038.
- Gekhtman M., Kasman A., On KP generators and the geometry of the HBDE, J. Geom. Phys. 56 (2006), 282-309, arXiv:math-ph/0502012.
- Gekhtman M., Kasman A., Tau-functions, Grassmannians and rank one conditions, J. Comput. Appl. Math. 202 (2007), 80-87.
- Getmanov B.S., New Lorentz-invariant system with exact multisoliton solutions, JETP Lett. 25 (1977), 119-122.
- Getmanov B.S., Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions, Theoret. and Math. Phys. 38 (1979), 124-130.
- Hietarinta J., A search for bilinear equations passing Hirota's three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys. 28 (1987), 1732-1742.
- Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016.
- Kasman A., Gekhtman M., Solitons and almost-intertwining matrices, J. Math. Phys. 42 (2001), 3540-3551, arXiv:math-ph/0011011.
- Lund F., Example of a relativistic, completely integrable, Hamiltonian system, Phys. Rev. Lett. 38 (1977), 1175-1178.
- Manakov S.V., Zakharov V.E., Three-dimensional model of relativistic-invariant field theory, integrable by the inverse scattering transform, Lett. Math. Phys. 5 (1981), 247-253.
- Nijhoff F., Atkinson J., Hietarinta J., Soliton solutions for ABS lattice equations. I. Cauchy matrix approach, J. Phys. A: Math. Theor. 42 (2009), 404005, 34 pages, arXiv:0902.4873.
- Nijhoff F.W., Quispel G.R.W., Capel H.W., Direct linearization of nonlinear difference-difference equations, Phys. Lett. A 97 (1983), 125-128.
- Pohlmeyer K., Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207-221.
- Pohlmeyer K., On the Lagrangian theory of anti-self-dual fields in four-dimensional Euclidean space, Comm. Math. Phys. 72 (1980), 37-47.
- Pohlmeyer K., Rehren K.H., Reduction of the two-dimensional ${\rm O}(n)$ nonlinear $\sigma$-model, J. Math. Phys. 20 (1979), 2628-2632.
- Quispel G.R.W., Nijhoff F.W., Capel H.W., van der Linden J., Linear integral equations and nonlinear difference-difference equations, Phys. A 125 (1984), 344-380.
- Ramani A., nverse scattering, ordinary differential equations of Painlevé-type, and Hirota's bilinear formalism, Ann. New York Acad. Sci. 373 (1981), 54-67.
- Sakhnovich A., Exact solutions of nonlinear equations and the method of operator identities, Linear Algebra Appl. 182 (1993), 109-126.
- Sakhnovich A., Generalized Bäcklund-Darboux transformation: spectral properties and nonlinear equations, J. Math. Anal. Appl. 262 (2001), 274-306.
- Schiebold C., The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions, J. Phys. A: Math. Theor. 43 (2010), 434030, 18 pages.
- Sun Y.-Y., Zhang D.-J., Nijhoff F.W., The Sylvester equation and the elliptic Korteweg-de Vries system, J. Math. Phys. 58 (2017), 033504, 25 pages, arXiv:1507.05476.
- Vekslerchik V.E., An ${\rm O}(3,1)$ nonlinear $\sigma$-model and the Ablowitz-Ladik hierarchy, J. Phys. A: Math. Gen. 27 (1994), 6299-6313.
- Vekslerchik V.E., Inverse scattering transform for the ${\rm O}(3,1)$ nonlinear $\sigma$-model, Inverse Problems 12 (1996), 517-534.
- Vekslerchik V.E., Soliton Fay identities: I. Dark soliton case, J. Phys. A: Math. Theor. 47 (2014), 415202, 19 pages, arXiv:1409.0406.
- Vekslerchik V.E., Soliton fay identities: II. Bright soliton case, J. Phys. A: Math. Theor. 48 (2015), 445204, 18 pages, arXiv:1510.00908.
- Vekslerchik V.E., Solitons of a simple nonlinear model on the cubic lattice, J. Phys. A: Math. Theor. 50 (2017), 475201, 15 pages, arXiv:1710.08651.
- Vekslerchik V.E., Explicit solutions for a nonlinear vector model on the triangular lattice, SIGMA 15 (2019), 028, 17 pages, arXiv:1812.06465.
- Vekslerchik V.E., Solitons of the $(2+2)$-dimensional Toda lattice, J. Phys. A: Math. Theor. 52 (2019), 045202, 11 pages, arXiv:1812.03695.
- Vekslerchik V.E., Solitons of the vector KdV and Yamilov lattices, J. Phys. A: Math. Theor. 52 (2019), 465203, 12 pages, arXiv:1910.07228.
- Xu D.-D., Zhang D.-J., Zhao S.-L., The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation, J. Nonlinear Math. Phys. 21 (2014), 382-406, arXiv:1401.5949.
- Yang C.N., Condition of self-duality for ${\rm SU}(2)$ gauge fields on Euclidean four-dimensional space, Phys. Rev. Lett. 38 (1977), 1377-1379.
- Zhang D.-J., Zhao S.-L., Solutions to ABS lattice equations via generalized Cauchy matrix approach, Stud. Appl. Math. 131 (2013), 72-103, arXiv:1208.3752.
|
|