|
SIGMA 16 (2020), 143, 28 pages arXiv:2007.01241
https://doi.org/10.3842/SIGMA.2020.143
Contribution to the Special Issue on Noncommutative Manifolds and their Symmetries in honour of Giovanni Landi
Riemannian Geometry of a Discretized Circle and Torus
Arkadiusz Bochniak, Andrzej Sitarz and Paweł Zalecki
Institute of Theoretical Physics, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
Received July 03, 2020, in final form December 15, 2020; Published online December 23, 2020
Abstract
We extend the results of Riemannian geometry over finite groups and provide a full classification of all linear connections for the minimal noncommutative differential calculus over a finite cyclic group. We solve the torsion-free and metric compatibility condition in general and show that there are several classes of solutions, out of which only special ones are compatible with a metric that gives a Hilbert $C^\ast$-module structure on the space of the one-forms. We compute curvature and scalar curvature for these metrics and find their continuous limits.
Key words: noncommutative Riemannian geometry; linear connections; curvature.
pdf (562 kb)
tex (119 kb)
References
- Argota-Quiroz J.N., Majid S., Quantum gravity on polygons and $\mathbb{R}\times \mathbb{Z}_n$ FLRW model, arXiv:2005.13999.
- Balachandran A.P., Bimonte G., Ercolessi E., Landi G., Lizzi F., Sparano G., Teotonio-Sobrinho P., Noncommutative lattices as finite approximations, J. Geom. Phys. 18 (1996), 163-194, arXiv:hep-th/9510217.
- Barrett J.W., Matrix geometries and fuzzy spaces as finite spectral triples, J. Math. Phys. 56 (2015), 082301, 25 pages, arXiv:1502.05383.
- Barrett J.W., Gaunt J., Finite spectral triples for the fuzzy torus, arXiv:1908.06796.
- Beggs E., Majid S., $*$-compatible connections in noncommutative Riemannian geometry, J. Geom. Phys. 61 (2011), 95-124, arXiv:0904.0539.
- Beggs E., Majid S., Gravity induced from quantum spacetime, Classical Quantum Gravity 31 (2014), 035020, 39 pages, arXiv:1305.2403.
- Beggs E., Majid S., Spectral triples from bimodule connections and Chern connections, J. Noncommut. Geom. 11 (2017), 669-701, arXiv:1508.04808.
- Beggs E., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, Vol. 355, Springer, Cham, 2020.
- Bhowmick J., Goswami D., Joardar S., A new look at Levi-Civita connection in noncommutative geometry, arXiv:1606.08142.
- Bhowmick J., Goswami D., Landi G., Levi-Civita connections and vector fields for noncommutative differential calculi, Internat. J. Math. 31 (2020), 2050065, 23 pages, arXiv:2001.01545.
- Bhowmick J., Goswami D., Landi G., On the Koszul formula in noncommutative geometry, Rev. Math. Phys. 32 (2020), 2050032, 33 pages, arXiv:1910.09306.
- Bhowmick J., Goswami D., Mukhopadhyay S., Levi-Civita connections for a class of spectral triples, Lett. Math. Phys. 110 (2020), 835-884, arXiv:1809.06721.
- Bresser K., Müller-Hoissen F., Dimakis A., Sitarz A., Non-commutative geometry of finite groups, J. Phys. A: Math. Gen. 29 (1996), 2705-2735, arXiv:q-alg/9509004.
- Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
- Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, Vol. 55, Amer. Math. Soc., Providence, RI, 2008.
- Dąbrowski L., Sitarz A., An asymmetric noncommutative torus, SIGMA 11 (2015), 075, 11 pages, arXiv:1406.4645.
- Dimakis A., Müller-Hoissen F., Differential calculus and gauge theory on finite sets, J. Phys. A: Math. Gen. 27 (1994), 3159-3178, arXiv:hep-th/9401149.
- Dubois-Violette M., Madore J., Masson T., Mourad J., On curvature in noncommutative geometry, J. Math. Phys. 37 (1996), 4089-4102, arXiv:q-alg/9512004.
- Dubois-Violette M., Michor P.W., Dérivations et calcul différentiel non commutatif. II, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 927-931, arXiv:hep-th/9406166.
- Fathizadeh F., Khalkhali M., Scalar curvature for the noncommutative two torus, J. Noncommut. Geom. 7 (2013), 1145-1183, arXiv:1110.3511.
- Fathizadeh F., Khalkhali M., Curvature in noncommutative geometry, in Advances in Noncommutative Geometry: on the Occasion of Alain Connes' 70th Birthday, Editors A. Chamseddine, C. Consani, N. Higson, M. Khalkhali, H. Moscovici, G. Yu, Springer, Cham, 2019, 321-420, arXiv:1901.07438.
- Floricel R., Ghorbanpour A., Khalkhali M., The Ricci curvature in noncommutative geometry, J. Noncommut. Geom. 13 (2019), 269-296, arXiv:1612.06688.
- Glaser L., Scaling behaviour in random non-commutative geometries, J. Phys. A: Math. Theor. 50 (2017), 275201, 18 pages, arXiv:1612.00713.
- Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics. New Series m: Monographs, Vol. 51, Springer-Verlag, Berlin, 1997.
- Madore J., Masson T., Mourad J., Linear connections on matrix geometries, Classical Quantum Gravity 12 (1995), 1429-1440, arXiv:hep-th/9506183.
- Majid S., Noncommutative Riemannian geometry on graphs, J. Geom. Phys. 69 (2013), 74-93, arXiv:1011.5898.
- Majid S., Quantum gravity on a square graph, Classical Quantum Gravity 36 (2019), 245009, 23 pages, arXiv:1810.10831.
- Majid S., Quantum Riemannian geometry and particle creation on the integer line, Classical Quantum Gravity 36 (2019), 135011, 22 pages, arXiv:1811.06264.
- Mourad J., Linear connections in non-commutative geometry, Classical Quantum Gravity 12 (1995), 965-974, arXiv:hep-th/9410201.
- Pérez-Sánchez C.I., Computing the spectral action for fuzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models, arXiv:1912.13288.
- Sitarz A., Metric on quantum spaces, Lett. Math. Phys. 31 (1994), 35-39.
- Torres E.L., Majid S., Quantum gravity and Riemannian geometry on the fuzzy sphere, arXiv:2004.14363.
- Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.
|
|