|
SIGMA 16 (2020), 140, 9 pages arXiv:2010.10321
https://doi.org/10.3842/SIGMA.2020.140
An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution
Alexei Zhedanov
School of Mathematics, Renmin University of China, Beijing 100872, China
Received November 02, 2020, in final form December 19, 2020; Published online December 21, 2020
Abstract
We present a new explicit family of polynomials orthogonal on the unit circle with a dense point spectrum. This family is expressed in terms of $q$-hypergeometric function of type ${_2}\phi_1$. The orthogonality measure is the wrapped geometric distribution. Some ''classical'' properties of the above polynomials are presented.
Key words: polynomials orthogonal on the unit circle; wrapped geometric dustribution; dense point spectrum.
pdf (304 kb)
tex (15 kb)
References
- Askey R., Comments to Gabor Szegő ''Collected papers, Vol. 1'', Contemporary Mathematicians, Birkhäuser, Boston, Mass., 1982, 806-811.
- Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
- Costa M.S., Godoy E., Lamblém R.L., Sri Ranga A., Basic hypergeometric functions and orthogonal Laurent polynomials, Proc. Amer. Math. Soc. 140 (2012), 2075-2089.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
- Geronimus Ya.L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation 1954 (1954), 79 pages.
- Grünbaum F.A., The bispectral problem: an overview, in Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Editors J. Bustoz, M.E.H. Ismail, S.K. Suslov, Kluwer Acad. Publ., Dordrecht, 2001, 129-140.
- Hendriksen E., van Rossum H., Orthogonal Laurent polynomials, Indag. Math. 89 (1986), 17-36.
- Jacob S., Jayakumar K., Wrapped geometric distribution: a new probability model for circular data, J. Stat. Theory Appl. 12 (2013), 348-355.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, earlier edition available at https://homepage.tudelft.nl/11r49/askey.html.
- Lagendijk A., van Tiggelen B., Wiersma D., Fifty years of Anderson localization, Phys. Today 62 (2009), no. 8, 24-29.
- Leonard D.A., Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13 (1982), 656-663.
- Lubinsky D.S., Saff E.B., Convergence of Padé approximants of partial theta functions and the Rogers-SzegHo polynomials, Constr. Approx. 3 (1987), 331-361.
- Magnus A.P., Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, J. Comput. Appl. Math. 65 (1995), 253-265.
- Magnus A.P., Semi-classical orthogonal polynomials on the unit circle, Preprint MAPA 3072A, available at https://perso.uclouvain.be/alphonse.magnus/num3/m3xxx99.pdf.
- Mardia K.V., Jupp P.E., Directional statistics, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2000.
- Pastro P.I., Orthogonal polynomials and some $q$-beta integrals of Ramanujan, J. Math. Anal. Appl. 112 (1985), 517-540.
- Simon B., Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, Vol. 54, Amer. Math. Soc., Providence, RI, 2005.
- Spiridonov V., Zhedanov A., Classical biorthogonal rational functions on elliptic grids, C. R. Math. Acad. Sci. Soc. R. Can. 22 (2000), 70-76.
- Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
- Tsujimoto S., Vinet L., Zhedanov A., An algebraic description of the bispectrality of the biorthogonal rational functions of Hahn type, Proc. Amer. Math. Soc., to appear, arXiv:2005.04217.
- Tsujimoto S., Zhedanov A., Elliptic hypergeometric Laurent biorthogonal polynomials with a dense point spectrum on the unit circle, SIGMA 5 (2009), 033, 30 pages, arXiv:0809.2574.
- Vinet L., Zhedanov A., Spectral transformations of the Laurent biorthogonal polynomials. II. Pastro polynomials, Canad. Math. Bull. 44 (2001), 337-345.
- Vinet L., Zhedanov A., A unified algebraic underpinning for the Hahn polynomials and rational functions, arXiv:2009.05905.
- Zhedanov A., The ''classical'' Laurent biorthogonal polynomials, J. Comput. Appl. Math. 98 (1998), 121-147.
- Zhedanov A., Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory 101 (1999), 303-329.
- Zhedanov A., On the polynomials orthogonal on regular polygons, J. Approx. Theory 97 (1999), 1-14.
- Zhedanov A., Elliptic polynomials orthogonal on the unit circle with a dense point spectrum, Ramanujan J. 19 (2009), 351-384, arXiv:0711.4696.
|
|