|
SIGMA 16 (2020), 139, 9 pages arXiv:1809.07362
https://doi.org/10.3842/SIGMA.2020.139
Exact Formulas of the Transition Probabilities of the Multi-Species Asymmetric Simple Exclusion Process
Eunghyun Lee
Nazarbayev University, Nur-sultan, Kazakhstan
Received September 17, 2020, in final form December 15, 2020; Published online December 20, 2020
Abstract
We find the formulas of the transition probabilities of the $N$-particle multi-species asymmetric simple exclusion processes (ASEP), and show that the transition probabilities are written as a determinant when the order of particles in the final state is the same as the order of particles in the initial state.
Key words: ASEP; multi-species ASEP; integrable probability.
pdf (328 kb)
tex (14 kb)
References
- Chatterjee S., Schütz G.M., Determinant representation for some transition probabilities in the TASEP with second class particles, J. Stat. Phys. 140 (2010), 900-916, arXiv:1003.5815.
- Korhonen M., Lee E., The transition probability and the probability for the left-most particle's position of the $q$-totally asymmetric zero range process, J. Math. Phys. 55 (2014), 013301, 15 pages, arXiv:1308.4769.
- Kuan J., Probability distributions of multi-species $q$-TAZRP and ASEP as double cosets of parabolic subgroups, Ann. Henri Poincaré 20 (2019), 1149-1173, arXiv:1801.02313.
- Kuan J., Determinantal expressions in multi-species TASEP, SIGMA 16 (2020), 133, 6 pages, arXiv:2007.02913.
- Kuniba A., Mangazeev V.V., Maruyama S., Okado M., Stochastic $R$ matrix for $U_q\big(A_n^{(1)}\big)$, Nuclear Phys. B 913 (2016), 248-277, arXiv:1604.08304.
- Lee E., Distribution of a particle's position in the ASEP with the alternating initial condition, J. Stat. Phys. 140 (2010), 635-647, arXiv:1004.1470.
- Lee E., The current distribution of the multiparticle hopping asymmetric diffusion model, J. Stat. Phys. 149 (2012), 50-72, arXiv:1203.0501.
- Lee E., Some conditional probabilities in the TASEP with second class particles, J. Math. Phys. 58 (2017), 123301, 11 pages, arXiv:1707.02539.
- Lee E., On the TASEP with second class particles, SIGMA 14 (2018), 006, 17 pages, arXiv:1705.10544.
- Lee E., Wang D., Distributions of a particle's position and their asymptotics in the $q$-deformed totally asymmetric zero range process with site dependent jumping rates, Stochastic Process. Appl. 129 (2019), 1795-1828, arXiv:1703.08839.
- Nagao T., Sasamoto T., Asymmetric simple exclusion process and modified random matrix ensembles, Nuclear Phys. B 699 (2004), 487-502, arXiv:cond-mat/0405321.
- Rákos A., Schütz G.M., Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates, Markov Process. Related Fields 12 (2006), 323-334, arXiv:cond-mat/0506525.
- Sasamoto T., Spatial correlations of the 1D KPZ surface on a flat substrate, J. Phys. A: Math. Gen. 38 (2005), L549-L556, arXiv:cond-mat/0504417.
- Schütz G.M., Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88 (1997), 427-445, arXiv:cond-mat/9701019.
- Tracy C.A., Widom H., Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys. 279 (2008), 815-844, arXiv:0704.2633.
- Tracy C.A., Widom H., Erratum to: Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys. 304 (2011), 875-878.
- Tracy C.A., Widom H., On the asymmetric simple exclusion process with multiple species, J. Stat. Phys. 150 (2013), 457-470, arXiv:1105.4906.
- Wang D., Waugh D., The transition probability of the $q$-TAZRP ($q$-bosons) with inhomogeneous jump rates, SIGMA 12 (2016), 037, 16 pages, arXiv:1512.01612.
|
|