Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 139, 9 pages      arXiv:1809.07362      https://doi.org/10.3842/SIGMA.2020.139

Exact Formulas of the Transition Probabilities of the Multi-Species Asymmetric Simple Exclusion Process

Eunghyun Lee
Nazarbayev University, Nur-sultan, Kazakhstan

Received September 17, 2020, in final form December 15, 2020; Published online December 20, 2020

Abstract
We find the formulas of the transition probabilities of the $N$-particle multi-species asymmetric simple exclusion processes (ASEP), and show that the transition probabilities are written as a determinant when the order of particles in the final state is the same as the order of particles in the initial state.

Key words: ASEP; multi-species ASEP; integrable probability.

pdf (328 kb)   tex (14 kb)  

References

  1. Chatterjee S., Schütz G.M., Determinant representation for some transition probabilities in the TASEP with second class particles, J. Stat. Phys. 140 (2010), 900-916, arXiv:1003.5815.
  2. Korhonen M., Lee E., The transition probability and the probability for the left-most particle's position of the $q$-totally asymmetric zero range process, J. Math. Phys. 55 (2014), 013301, 15 pages, arXiv:1308.4769.
  3. Kuan J., Probability distributions of multi-species $q$-TAZRP and ASEP as double cosets of parabolic subgroups, Ann. Henri Poincaré 20 (2019), 1149-1173, arXiv:1801.02313.
  4. Kuan J., Determinantal expressions in multi-species TASEP, SIGMA 16 (2020), 133, 6 pages, arXiv:2007.02913.
  5. Kuniba A., Mangazeev V.V., Maruyama S., Okado M., Stochastic $R$ matrix for $U_q\big(A_n^{(1)}\big)$, Nuclear Phys. B 913 (2016), 248-277, arXiv:1604.08304.
  6. Lee E., Distribution of a particle's position in the ASEP with the alternating initial condition, J. Stat. Phys. 140 (2010), 635-647, arXiv:1004.1470.
  7. Lee E., The current distribution of the multiparticle hopping asymmetric diffusion model, J. Stat. Phys. 149 (2012), 50-72, arXiv:1203.0501.
  8. Lee E., Some conditional probabilities in the TASEP with second class particles, J. Math. Phys. 58 (2017), 123301, 11 pages, arXiv:1707.02539.
  9. Lee E., On the TASEP with second class particles, SIGMA 14 (2018), 006, 17 pages, arXiv:1705.10544.
  10. Lee E., Wang D., Distributions of a particle's position and their asymptotics in the $q$-deformed totally asymmetric zero range process with site dependent jumping rates, Stochastic Process. Appl. 129 (2019), 1795-1828, arXiv:1703.08839.
  11. Nagao T., Sasamoto T., Asymmetric simple exclusion process and modified random matrix ensembles, Nuclear Phys. B 699 (2004), 487-502, arXiv:cond-mat/0405321.
  12. Rákos A., Schütz G.M., Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates, Markov Process. Related Fields 12 (2006), 323-334, arXiv:cond-mat/0506525.
  13. Sasamoto T., Spatial correlations of the 1D KPZ surface on a flat substrate, J. Phys. A: Math. Gen. 38 (2005), L549-L556, arXiv:cond-mat/0504417.
  14. Schütz G.M., Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88 (1997), 427-445, arXiv:cond-mat/9701019.
  15. Tracy C.A., Widom H., Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys. 279 (2008), 815-844, arXiv:0704.2633.
  16. Tracy C.A., Widom H., Erratum to: Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys. 304 (2011), 875-878.
  17. Tracy C.A., Widom H., On the asymmetric simple exclusion process with multiple species, J. Stat. Phys. 150 (2013), 457-470, arXiv:1105.4906.
  18. Wang D., Waugh D., The transition probability of the $q$-TAZRP ($q$-bosons) with inhomogeneous jump rates, SIGMA 12 (2016), 037, 16 pages, arXiv:1512.01612.

Previous article  Next article  Contents of Volume 16 (2020)