Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 136, 7 pages      arXiv:2007.02705      https://doi.org/10.3842/SIGMA.2020.136
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday

On the 2-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$

Thomas Richard ab
a) Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
b) Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France

Received July 07, 2020, in final form December 14, 2020; Published online December 17, 2020

Abstract
We use recent developments by Gromov and Zhu to derive an upper bound for the 2-systole of the homology class of $\mathbb{S}^2\times\{\ast\}$ in a $\mathbb{S}^2\times\mathbb{S}^2$ with a positive scalar curvature metric such that the set of surfaces homologous to $\mathbb{S}^2\times\{\ast\}$ is wide enough in some sense.

Key words: scalar curvature; higher systoles; geometric inequalities.

pdf (319 kb)   tex (12 kb)  

References

  1. Berger M., Systoles et applications selon Gromov, Astérisque 216 (1993), 771, 279-310.
  2. Bott R., Tu L.W., Differential forms in algebraic topology, Graduate Texts in Mathematics, Vol. 82, Springer-Verlag, New York - Berlin, 1982.
  3. Bray H., Brendle S., Neves A., Rigidity of area-minimizing two-spheres in three-manifolds, Comm. Anal. Geom. 18 (2010), 821-830, arXiv:1002.2814.
  4. Gromov M., Metric inequalities with scalar curvature, Geom. Funct. Anal. 28 (2018), 645-726, arXiv:1710.04655.
  5. Gromov M., Four lectures on scalar curvature, arXiv:1908.10612.
  6. Gromov M., Lawson Jr. H.B., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83-196.
  7. Hatcher A., Vector bundles and K-theory, available at http://pi.math.cornell.edu/~hatcher/.
  8. Katz M.G., Suciu A.I., Volume of Riemannian manifolds, geometric inequalities, and homotopy theory, in Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math., Vol. 231, Amer. Math. Soc., Providence, RI, 1999, 113-136, arXiv:math.DG/9810172.
  9. Zhu J., Rigidity of area-minimizing $2$-spheres in $n$-manifolds with positive scalar curvature, Proc. Amer. Math. Soc. 148 (2020), 3479-3489, arXiv:1903.05785.

Previous article  Next article  Contents of Volume 16 (2020)