Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 134, 16 pages      arXiv:2007.13277      https://doi.org/10.3842/SIGMA.2020.134

Knot Complement, ADO Invariants and their Deformations for Torus Knots

John Chae
Univeristy of California Davis, Davis, USA

Received August 20, 2020, in final form December 09, 2020; Published online December 15, 2020

Abstract
A relation between the two-variable series knot invariant and the Akutsu-Deguchi-Ohtsuki (ADO) invariant was conjectured recently. We reinforce the conjecture by presenting explicit formulas and/or an algorithm for particular ADO invariants of torus knots obtained from the series invariant of complement of a knot. Furthermore, one parameter deformation of ${\rm ADO}_3$ polynomial of torus knots is provided.

Key words: torus knots; knot complement; quantum invariant; $q$-series; ADO Polynomials; Chern-Simons theory; categorification.

pdf (400 kb)   tex (22 kb)  

References

  1. Akutsu Y., Deguchi T., Ohtsuki T., Invariants of colored links, J. Knot Theory Ramifications 1 (1992), 161-184.
  2. Bar-Natan D., Garoufalidis S., On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996), 103-133.
  3. Brown J., Dimofte T., Garoufalidis S., Geer N., The ADO invariants are a $q$-holonomic family, arXiv:2005.08176.
  4. Dunfield N.M., Gukov S., Rasmussen J., The superpolynomial for knot homologies, Experiment. Math. 15 (2006), 129-159, arXiv:math.GT/0505662.
  5. Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\hat{Z}$ at large $N$: from curve counts to quantum modularity, arXiv:2005.13349.
  6. Elliot R., Gukov S., Exceptional knot homology, J. Knot Theory Ramifications 25 (2016), 1640003, 49 pages, arXiv:1505.01635.
  7. Fuji H., Gukov S., Stosic M., Sułkowski P., 3d analogs of Argyres-Douglas theories and knot homologies, J. High Energy Phys. 2013 (2013), no. 1, 175, 38 pages, arXiv:1209.1416.
  8. Garoufalidis S., On the characteristic and deformation varieties of a knot, in Proceedings of the Casson Fest, Geom. Topol. Monogr., Vol. 7, Geom. Topol. Publ., Coventry, 2004, 291-309, arXiv:math.GT/0306230.
  9. Gukov S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005), 577-627, arXiv:hep-th/0306165.
  10. Gukov S., Gauge theory and knot homologies, Fortschr. Phys. 55 (2007), 473-490.
  11. Gukov S., Hsin P.-S., Nakajima H., Park S., Pei D., Sopenko N., Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, arXiv:2005.05347.
  12. Gukov S., Manolescu C., A two-variable series for knot complements, arXiv:1904.06057.
  13. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  14. Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
  15. Gukov S., Schwarz A., Vafa C., Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005), 53-74, arXiv:hep-th/0412243.
  16. Gukov S., Walcher J., Matrix factorizations and Kauffman homology, arXiv:hep-th/0512298.
  17. Khovanov M., A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359-426, arXiv:math.QA/9908171.
  18. Khovanov M., Rozansky L., Matrix factorizations and link homology, Fund. Math. 199 (2008), 1-91, arXiv:math.QA/0401268.
  19. Khovanov M., Rozansky L., Matrix factorizations and link homology. II, Geom. Topol. 12 (2008), 1387-1425, arXiv:math.QA/0505056.
  20. Kucharski P., Quivers for 3-manifolds: the correspondence, BPS states, and 3d ${\mathcal N}=2$ theories, arXiv:2005.13394.
  21. Melvin P.M., Morton H.R., The coloured Jones function, Comm. Math. Phys. 169 (1995), 501-520.
  22. Nawata S., Oblomkov A., Lectures on knot homology, in Physics and Mathematics of Link Homology, Contemp. Math., Vol. 680, Amer. Math. Soc., Providence, RI, 2016, 137-177, arXiv:1510.01795.
  23. Ozsváth P., Szabó Z., Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58-116, arXiv:math.GT/0209056.
  24. Park S., Large color $R$-matrix for knot complements and strange identities, arXiv:2004.02087.
  25. Park S., Higher rank $\hat{Z}$ and $F_K$, SIGMA 16 (2020), 044, 17 pages, arXiv:1909.13002.
  26. Rasmussen J., Floer homology and knot complements, arXiv:math.GT/0306378.
  27. Reshetikhin N., Turaev V., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
  28. Reshetikhin N., Turaev V., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  29. Rozansky L., Higher order terms in the Melvin-Morton expansion of the colored Jones polynomial, Comm. Math. Phys. 183 (1997), 291-306, arXiv:q-alg/9601009.
  30. Webster B., An introduction to categorifying quantum knot invariants, in Proceedings of the Freedman Fest, Geom. Topol. Monogr., Vol. 18, Geom. Topol. Publ., Coventry, 2012, 253-289.
  31. Willetts S., A unification of the ADO and colored Jones polynomials of a knot, arXiv:2003.09854.
  32. Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.
  33. Witten E., Fivebranes and knots, Quantum Topol. 3 (2012), 1-137, arXiv:1101.3216.

Previous article  Next article  Contents of Volume 16 (2020)