Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 133, 6 pages      arXiv:2007.02913      https://doi.org/10.3842/SIGMA.2020.133

Determinantal Expressions in Multi-Species TASEP

Jeffrey Kuan
Texas A&M University, Department of Mathematics, Mailstop 3368, College Station, TX 77843-3368, USA

Received July 14, 2020, in final form December 03, 2020; Published online December 11, 2020

Abstract
Consider an inhomogeneous multi-species TASEP with drift to the left, and define a height function which equals the maximum species number to the left of a lattice site. For each fixed time, the multi-point distributions of these height functions have a determinantal structure. In the homogeneous case and for certain initial conditions, the fluctuations of the height function converge to Gaussian random variables in the large-time limit. The proof utilizes a coupling between the multi-species TASEP and a coalescing random walk, and previously known results for coalescing random walks.

Key words: determinantal; multi-species; TASEP; coalescing.

pdf (273 kb)   tex (11 kb)  

References

  1. Assiotis T., Random surface growth and Karlin-McGregor polynomials, Electron. J. Probab. 23 (2018), 106, 81 pages, arXiv:1709.10444.
  2. Baik J., Ferrari P.L., Péché S., Limit process of stationary TASEP near the characteristic line, Comm. Pure Appl. Math. 63 (2010), 1017-1070, arXiv:0907.0226.
  3. Borodin A., Bufetov A., Leading particles in multi-type TASEP, in preparation.
  4. Borodin A., Ferrari P.L., Prähofer M., Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process, Int. Math. Res. Pap. 2007 (2007), rpm002, 47 pages, arXiv:math-ph/0611071.
  5. Borodin A., Ferrari P.L., Prähofer M., Sasamoto T., Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys. 129 (2007), 1055-1080, arXiv:math-ph/0608056.
  6. Borodin A., Ferrari P.L., Sasamoto T., Large time asymptotics of growth models on space-like paths. II. PNG and parallel TASEP, Comm. Math. Phys. 283 (2008), 417-449, arXiv:0707.4207.
  7. Borodin A., Ferrari P.L., Sasamoto T., Transition between Airy1 and Airy2 processes and TASEP fluctuations, Comm. Pure Appl. Math. 61 (2008), 1603-1629, arXiv:math-ph/0703023.
  8. Chatterjee S., Schütz G.M., Determinant representation for some transition probabilities in the TASEP with second class particles, J. Stat. Phys. 140 (2010), 900-916, arXiv:1003.5815.
  9. Chen Z., de Gier J., Hiki I., Sasamoto T., Exact confirmation of 1d nonlinear fluctuating hydrodynamics for a two-species exclusion process, Phys. Rev. Lett. 120 (2018), 240601, 6 pages, arXiv:1803.06829.
  10. Johansson K., Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277-329, arXiv:math.PR/0206208.
  11. Lee E., On the TASEP with second class particles, SIGMA 14 (2018), 006, 17 pages, arXiv:1705.10544.
  12. Quastel J., Remenik D., KP governs random growth of a one dimensional substrate, arXiv:1908.10353.
  13. Schütz G.M., Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88 (1997), 427-445, arXiv:cond-mat/9701019.
  14. Warren J., Dyson's Brownian motions, intertwining and interlacing, Electron. J. Probab. 12 (2007), no. 19, 573-590, arXiv:math.PR/0509720.

Previous article  Next article  Contents of Volume 16 (2020)