|
SIGMA 16 (2020), 124, 15 pages arXiv:1902.08598
https://doi.org/10.3842/SIGMA.2020.124
Further Results on a Function Relevant for Conformal Blocks
Vincent Comeau a, Jean-François Fortin b and Witold Skiba c
a) Department of Physics, McGill University, Montréal, QC H3A 2T8, Canada
b) Département de Physique, de Génie Physique et d'Optique, Université Laval, Québec, QC G1V 0A6, Canada
c) Department of Physics, Yale University, New Haven, CT 06520, USA
Received July 07, 2020, in final form November 24, 2020; Published online November 30, 2020
Abstract
We present further mathematical results on a function appearing in the conformal blocks of four-point correlation functions with arbitrary primary operators. The $H$-function was introduced in a previous article and it has several interesting properties. We prove explicitly the recurrence relation as well as the $D_6$-invariance presented previously. We also demonstrate the proper action of the differential operator used to construct the $H$-function.
Key words: special functions; conformal field theory.
pdf (357 kb)
tex (19 kb)
References
- Beyer W.A., Louck J.D., Stein P.R., Group theoretical basis of some identities for the generalized hypergeometric series, J. Math. Phys. 28 (1987), 497-508.
- Dirac P.A.M., Wave equations in conformal space, Ann. of Math. 37 (1936), 429-442.
- Dobrev V.K., Mack G., Petkova V.B., Petrova S.G., Todorov I.T., Harmonic analysis: on the $n$-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys., Vol. 63, Springer-Verlag, Berlin - Heidelberg, 1977.
- Dolan F.A., Osborn H., Conformal four point functions and the operator product expansion, Nuclear Phys. B 599 (2001), 459-496, arXiv:hep-th/0011040.
- Dolan F.A., Osborn H., Conformal partial waves and the operator product expansion, Nuclear Phys. B 678 (2004), 491-507, arXiv:hep-th/0309180.
- Exton H., On the system of partial differential equations associated with Appell's function $F_4$, J. Phys. A: Math. Gen. 28 (1995), 631-641.
- Ferrara S., Gatto R., Grillo A.F., Conformal invariance on the light cone and canonical dimensions, Nuclear Phys. B 34 (1971), 349-366.
- Ferrara S., Gatto R., Grillo A.F., Conformal algebra in space-time and operator product expansion, Springer Tracts in Modern Physics, Vol. 67, Springer-Verlag, Berlin - Heidelberg, 1973.
- Ferrara S., Grillo A.F., Gatto R., Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cimento 2 (1971), 1363-1369.
- Ferrara S., Grillo A.F., Gatto R., Manifestly conformal-covariant expansion on the light cone, Phys. Rev. D 5 (1972), 3102-3108.
- Ferrara S., Grillo A.F., Gatto R., Tensor representations of conformal algebra and conformally covariant operator product expansion, Ann. Physics 76 (1973), 161-188.
- Ferrara S., Grillo A.F., Parisi G., Gatto R., The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cimento 4 (1972), 115-120.
- Ferrara S., Parisi G., Conformal covariant correlation functions, Nuclear Phys. B 42 (1972), 281-290.
- Fortin J.F., Skiba W., Conformal bootstrap in embedding space, Phys. Rev. D 93 (2016), 105047, 7 pages, arXiv:1602.05794.
- Fortin J.F., Skiba W., Conformal differential operator in embedding space and its applications, J. High Energy Phys. 2019 (2019), no. 7, 093, 19 pages, arXiv:1612.08672.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
- Horn J., Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen, Math. Ann. 34 (1889), 544-600.
- Isachenkov M., Schomerus V., Integrability of conformal blocks. Part I. Calogero-Sutherland scattering theory, J. High Energy Phys. 2018 (2018), no. 7, 180, 66 pages, arXiv:1711.06609.
- Karateev D., Kravchuk P., Simmons-Duffin D., Weight shifting operators and conformal blocks, J. High Energy Phys. 2018 (2018), no. 2, 081, 81 pages, arXiv:1706.07813.
- Mack G., Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory, Comm. Math. Phys. 53 (1977), 155-184.
- Mack G., Salam A., Finite-component field representations of the conformal group, Ann. Physics 53 (1969), 174-202.
- Penedones J., Trevisani E., Yamazaki M., Recursion relations for conformal blocks, J. High Energy Phys. 2016 (2016), no. 9, 070, 50 pages, arXiv:1509.00428.
- Poland D., Rychkov S., Vichi A., The conformal bootstrap: theory, numerical techniques, and applications, Rev. Modern Phys. 91 (2019), 015002, 74 pages, arXiv:1805.04405.
- Polyakov A.M., Non-Hamiltonian approach to conformal quantum field theory, Sov. Phys. JETP 39 (1974), 10-18.
- Rainville E.D., Special functions, Chelsea Publishing Co., Bronx, N.Y., 1971.
- Rattazzi R., Rychkov V.S., Tonni E., Vichi A., Bounding scalar operator dimensions in 4D CFT, J. High Energy Phys. 2008 (2008), no. 12, 031, 49 pages, arXiv:0807.0004.
- Schomerus V., Sobko E., From spinning conformal blocks to matrix Calogero-Sutherland models, J. High Energy Phys. 2018 (2018), no. 4, 052, 29 pages, arXiv:1711.02022.
- Schomerus V., Sobko E., Isachenkov M., Harmony of spinning conformal blocks, J. High Energy Phys. 2017 (2017), no. 3, 085, 23 pages, arXiv:1612.02479.
- Simmons-Duffin D., Projectors, shadows, and conformal blocks, J. High Energy Phys. 2014 (2014), no. 4, 146, 36 pages, arXiv:1204.3894.
- Srivastava H.M., Daoust M.C., A note on the convergence of Kampé de Fériet's double hypergeometric series, Math. Nachr. 53 (1972), 151-159.
- Srivastava H.M., Karlsson P.W., Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1985.
- Srivastava P., Gupta P., A note on hypergeometric functions of one and two variables, Amer. J. Comput. Appl. Math. 3 (2013), 182-185.
- Weinberg S., Six-dimensional methods for four-dimensional conformal field theories, Phys. Rev. D 82 (2010), 045031, 11 pages, arXiv:1006.3480.
- Weinberg S., Six-dimensional methods for four-dimensional conformal field theories. II. Irreducible fields, Phys. Rev. D 86 (2012), 085013, 3 pages, arXiv:1209.4659.
- Zamolodchikov A.B., Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Comm. Math. Phys. 96 (1984), 419-422.
- Zamolodchikov A.B., Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theoret. and Math. Phys. 73 (1987), 1088-1093.
|
|