Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 121, 13 pages      arXiv:1811.05084      https://doi.org/10.3842/SIGMA.2020.121

Obstructions for Symplectic Lie Algebroids

Ralph L. Klaasse
Département de Mathematique, Université libre de Bruxelles, CP 218 Boulevard du Triomphe, B-1050 Bruxelles, Belgium

Received April 06, 2020, in final form November 23, 2020; Published online November 27, 2020

Abstract
Several types of generically-nondegenerate Poisson structures can be effectively studied as symplectic structures on naturally associated Lie algebroids. Relevant examples of this phenomenon include log-, elliptic, $b^k$-, scattering and elliptic-log Poisson structures. In this paper we discuss topological obstructions to the existence of such Poisson structures, obtained through the characteristic classes of their associated symplectic Lie algebroids. In particular we obtain the full obstructions for surfaces to carry such Poisson structures.

Key words: Poisson geometry; Lie algebroids; log-symplectic; elliptic symplectic.

pdf (391 kb)   tex (22 kb)  

References

  1. Behrens S., Cavalcanti G.R., Klaasse R.L., Classification of boundary Lefschetz fibrations over the disc, in Geometry and Physics, Vol. II, Oxford University Press, Oxford, 2018, 399-418, arXiv:1706.09207.
  2. Cannas da Silva A., Fold-forms for four-folds, J. Symplectic Geom. 8 (2010), 189-203, arXiv:0909.4067.
  3. Cannas da Silva A., Guillemin V., Woodward C., On the unfolding of folded symplectic structures, Math. Res. Lett. 7 (2000), 35-53.
  4. Cavalcanti G.R., Examples and counter-examples of log-symplectic manifolds, J. Topol. 10 (2017), 1-21, arXiv:1303.6420.
  5. Cavalcanti G.R., Gualtieri M., Stable generalized complex structures, Proc. Lond. Math. Soc. 116 (2018), 1075-1111, arXiv:1503.06357.
  6. Cavalcanti G.R., Klaasse R.L., Fibrations and stable generalized complex structures, Proc. Lond. Math. Soc. 117 (2018), 1242-1280, arXiv:1703.03798.
  7. Cavalcanti G.R., Klaasse R.L., Fibrations and log-symplectic structures, J. Symplectic Geom. 17 (2019), 603-638, arXiv:1606.00156.
  8. Godbillon C., Éléments de topologie algébrique, Hermann, Paris, 1971.
  9. Gompf R.E., Stipsicz A.I., $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, Vol. 20, Amer. Math. Soc., Providence, RI, 1999.
  10. Gualtieri M., Li S., Symplectic groupoids of log symplectic manifolds, Int. Math. Res. Not. 2014 (2014), 3022-3074, arXiv:1206.3674.
  11. Guillemin V., Miranda E., Pires A.R., Symplectic and Poisson geometry on $b$-manifolds, Adv. Math. 264 (2014), 864-896, arXiv:1206.2020.
  12. Guillemin V., Miranda E., Weitsman J., Desingularizing $b^m$-symplectic structures, Int. Math. Res. Not. 2019 (2019), 2981-2998, arXiv:1512.05303.
  13. Hirzebruch F., Hopf H., Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
  14. Klaasse R.L., Geometric structures and Lie algebroids, Ph.D. Thesis, Utrecht University, 2017, arXiv:1712.09560.
  15. Klaasse R.L., Poisson structures of divisor-type, arXiv:1811.04226.
  16. Lanius M., Symplectic, Poisson, and contact geometry on scattering manifolds, Pacific J. Math., to appear, arXiv:1603.02994.
  17. Li S., Constructions of Lie groupoids, Ph.D. Thesis, University of Toronto, 2013.
  18. Mărcuţ I., Osorno Torres B., Deformations of log-symplectic structures, J. Lond. Math. Soc. 90 (2014), 197-212, arXiv:1307.3277.
  19. Mărcuţ I., Osorno Torres B., On cohomological obstructions for the existence of log-symplectic structures, J. Symplectic Geom. 12 (2014), 863-866, arXiv:1303.6246.
  20. McDuff D., Salamon D., Introduction to symplectic topology, 3rd ed., Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2017.
  21. Melrose R.B., The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, Vol. 4, A K Peters, Ltd., Wellesley, MA, 1993.
  22. Melrose R.B., Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995.
  23. Milnor J.W., Stasheff J.D., Characteristic classes, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1974.
  24. Miranda E., Planas A., Classification of $b^m$-Nambu structures of top degree, C. R. Math. Acad. Sci. Paris 356 (2018), 92-96.
  25. Miranda E., Planas A., Equivariant classification of $b^m$-symplectic surfaces, Regul. Chaotic Dyn. 23 (2018), 355-371, arXiv:1607.01748.
  26. Nest R., Tsygan B., Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math. 5 (2001), 599-635, arXiv:math.QA/9906020.
  27. Scott G., The geometry of $b^k$ manifolds, J. Symplectic Geom. 14 (2016), 71-95, arXiv:1304.3821.
  28. Wu W.T., Sur les classes caractéristiques des structures fibrées sphériques, in Publ. Inst. Math. Univ. Strasbourg 11, Actualités Sci. Ind., Vol. 1183, Hermann & Cie, Paris, 1952, 5-89.

Previous article  Next article  Contents of Volume 16 (2020)