Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 120, 23 pages      arXiv:2006.01579      https://doi.org/10.3842/SIGMA.2020.120

Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types

Andrii Liashyk a and Stanislav Z. Pakuliak b
a) Skolkovo Institute of Science and Technology, Moscow, Russia
b) Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Str., Moscow, 119991, Russia

Received June 03, 2020, in final form November 15, 2020; Published online November 22, 2020

Abstract
We consider relations between Gauss coordinates of $T$-operators for the Yangian doubles of the classical types corresponding to the algebras $\mathfrak{g}$ of $A$, $B$, $C$ and $D$ series and the current generators of these algebras. These relations are important for the applications in the quantum integrable models related to $\mathfrak{g}$-invariant $R$-matrices and construction of the Bethe vectors in these models.

Key words: Yangians; Gauss decomposition; Drinfeld currents.

pdf (507 kb)   tex (26 kb)  

References

  1. Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra $U_q({\mathfrak{gl}}(n))$, Comm. Math. Phys. 156 (1993), 277-300.
  2. Drinfel'd V.G., A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl. 36 (1988), 212-216.
  3. Drinfel'd V.G., Quantum groups, J. Soviet Math. 41 (1988), 898-915.
  4. Enriquez B., Khoroshkin S., Pakuliak S., Weight functions and Drinfeld currents, Comm. Math. Phys. 276 (2007), 691-725, arXiv:math.QA/0610398.
  5. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Current presentation for the double super-Yangian $DY(\mathfrak{gl}(m|n))$ and Bethe vectors, Russian Math. Surveys 72 (2017), 33-99, arXiv:1611.09020.
  6. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors, J. Stat. Mech. Theory Exp. 2020 (2020), 093104, 31 pages, arXiv:2005.09249.
  7. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$, Comm. Math. Phys. 361 (2018), 827-872, arXiv:1705.08155.
  8. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$, J. Math. Phys. 61 (2020), 031701, 41 pages, arXiv:1903.00204.
  9. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$, SIGMA 16 (2020), 043, 49 pages, arXiv:1911.03496.
  10. Jing N., Yang F., Liu M., Yangian doubles of classical types and their vertex representations, J. Math. Phys. 61 (2020), 051704, 39 pages, arXiv:1810.06484.
  11. Khoroshkin S., Pakuliak S., A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$, J. Math. Kyoto Univ. 48 (2008), 277-321, arXiv:0711.2819.
  12. Kulish P.P., Reshetikhin N.Yu., Generalized Heisenberg ferromagnet and the Gross-Neveu model, Sov. Phys. JETP 53 (1981), 108-114.
  13. Kulish P.P., Reshetikhin N.Yu., Diagonalisation of ${\rm GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model), J. Phys. A: Math. Gen. 16 (1983), L591-L596.
  14. Liashyk A., Pakuliak S.Z., Algebraic Bethe ansatz for $\mathfrak{o}_{2n+1}$-invariant integrable models, arXiv:2008.03664.
  15. Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., New symmetries of $\mathfrak{gl}(N)$-invariant Bethe vectors, J. Stat. Mech. Theory Exp. 2019 (2019), 044001, 24 pages, arXiv:1810.00364.
  16. Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
  17. Zamolodchikov A.B., Zamolodchikov A.B., Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Physics 120 (1979), 253-291.

Previous article  Next article  Contents of Volume 16 (2020)