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Figure 2. The geometric angle ✓ computed between colli-
sion subspaces.
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Figure 2. Jacobi vectors

3.2. The Main Collision Bound Theorems. Consider equal masses M in the
plane. This changes our linear projection into
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The mass M is clearly a dilation factor, so we assume the mass to be unit henceforth.

Recall our codimension 2 collision subspaces are defined as follows:

�12 = {(q1, q2, q3) 2 C3 : q1 = q2}
�23 = {(q1, q2, q3) 2 C3 : q2 = q3}
�13 = {(q1, q2, q3) 2 C3 : q1 = q3}.

Example 2. Using our previous results, we can see that, for instance, \(�12, �23) =
[0, 0, �
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The image of these subspaces under ⇡tr are
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Each of these codimension 2 (and dimension 2) subspaces are planes in C2
0.

C

C

�0

12

�0

13

�0

23

Figure 3. An “overhead” view of C2
0 and the collision subspaces.

Through this reduction via Jacobi coordinates, the angles between these subspaces
are \(�0

12, �
0
23) = \(�0

12, �
0
13) = \(�0

23, �
0
13) = [�

3 , �
3 ].

And to further our previous example, we can observe that the principal vectors for

\(�0
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for the second angle. But in fact one can check that indeed
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Since ⇡tr is linear, we know that the image of the other pair of principal vectors
between �12 and �23 will also be the principal vectors between �0

12 and �0
23. That

is, the image of a nonzero principal vector under ⇡tr is still a principal vector!

Theorem 4. In the equal mass planar 3-billiard problem, there can be at most 3
collisions.

To prove the theorem, we need to following lemma.

Figure 3. (a) Jacobi vectors; (b) An “overhead” view of C2
0

and the collision subspaces.


