Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 119, 13 pages      arXiv:1810.05777      https://doi.org/10.3842/SIGMA.2020.119

Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces

Sean Gasiorek
School of Mathematics and Statistics, Carslaw F07, University of Sydney, NSW 2011, Australia

Received July 24, 2020, in final form November 10, 2020; Published online November 21, 2020

Abstract
The principal angles between binary collision subspaces in an $N$-billiard system in $d$-dimensional Euclidean space are computed. These angles are computed for equal masses and arbitrary masses. We then provide a bound on the number of collisions in the planar 3-billiard system problem. Comparison of this result with known billiard collision bounds in lower dimensions is discussed.

Key words: mathematical billiards; angles between subspaces; counting collisions.

pdf (959 kb)   tex (2135 kb)  

References

  1. Albers P., Tabachnikov S., Introducing symplectic billiards, Adv. Math. 333 (2018), 822-867, arXiv:1708.07395.
  2. Bialy M., Mironov A.E., Tabachnikov S., Wire billiards, the first steps, Adv. Math. 368 (2020), 107154, 27 pages, arXiv:1905.13617.
  3. Björck A., Golub G.H., Numerical methods for computing angles between linear subspaces, Math. Comp. 27 (1973), 579-594.
  4. Bolotin S.V., Degenerate billiards, Proc. Steklov Inst. Math. 295 (2016), 45-62, arXiv:1606.06708.
  5. Bolotin S.V., Degenerate billiards in celestial mechanics, Regul. Chaotic Dyn. 22 (2017), 27-53, arXiv:1612.08907.
  6. Burago D., Ferleger S., Kononenko A., Uniform estimates on the number of collisions in semi-dispersing billiards, Ann. of Math. 147 (1998), 695-708.
  7. Burago D., Ferleger S., Kononenko A., A geometric approach to semi-dispersing billiards, in Hard Ball Systems and the Lorentz Gas, Encyclopaedia Math. Sci., Vol. 101, Springer, Berlin, 2000, 9-27.
  8. Burdzy K., Duarte M., A lower bound for the number of elastic collisions, Comm. Math. Phys. 372 (2019), 679-711, arXiv:1803.00979.
  9. Féjoz J., Knauf A., Montgomery R., Lagrangian relations and linear point billiards, Nonlinearity 30 (2017), 1326-1355, arXiv:1606.01420.
  10. Galperin G., Playing pool with $\pi$ (the number $\pi$ from a billiard point of view), Regul. Chaotic Dyn. 8 (2003), 375-394.
  11. Knyazev A., Argentati M., Majorization for changes in angles between subspaces, Ritz values, and graph Laplacian spectra, SIAM J. Matrix Anal. Appl. 29 (2006), 15-32, arXiv:math.NA/0508591.
  12. Knyazev A., Jujunashvili A., Argentati M., Angles between infinite dimensional subspaces with applications to the Rayleigh-Ritz and alternating projectors methods, J. Funct. Anal. 259 (2010), 1323-1345, arXiv:0705.1023.
  13. Kozlov V.V., Treshchëv D.V., Billiards. A genetic introduction to the dynamics of systems with impacts, Translations of Mathematical Monographs, Vol. 89, Amer. Math. Soc., Providence, RI, 1991.
  14. Montgomery R., The three-body problem and the shape sphere, Amer. Math. Monthly 122 (2015), 299-321, arXiv:1402.0841.
  15. Murphy T.J., Cohen E.G.D., Maximum number of collisions among identical hard spheres, J. Statist. Phys. 71 (1993), 1063-1080.
  16. Murphy T.J., Cohen E.G.D., On the sequences of collisions among hard spheres in infinite space, in Hard Ball Systems and the Lorentz Gas, Encyclopaedia Math. Sci., Vol. 101, Springer, Berlin, 2000, 29-49.
  17. Sevryuk M.B., Estimate of the number of collisions of $n$ elastic particles on a line, Theoret. and Math. Phys. 96 (1993), 818-826.
  18. Sinai Ya.G., Billiard trajectories in a polyhedral angle, Russian Math. Surveys 33 (1978), 219-220.
  19. Tabachnikov S., Geometry and billiards, Student Mathematical Library, Vol. 30, Amer. Math. Soc., Providence, RI, 2005.

Previous article  Next article  Contents of Volume 16 (2020)