Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 117, 15 pages      arXiv:2006.12217      https://doi.org/10.3842/SIGMA.2020.117

A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces

Victor S. Barbosa a and Valdir A. Menegatto b
a) Centro Tecnológico de Joinville-UFSC, Rua Dona Francisca, 8300. Bloco U, 89219-600 Joinville SC, Brazil
b) Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil

Received June 23, 2020, in final form November 07, 2020; Published online November 19, 2020

Abstract
This paper is concerned with the construction of positive definite functions on a cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and its many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.

Key words: positive definite functions; generalized Stieltjes functions; Bernstein functions; Gneiting's model; products of metric spaces.

pdf (368 kb)   tex (20 kb)  

References

  1. Alegría A., Porcu E., Furrer R., Mateu J., Covariance functions for multivariate Gaussian fields evolving temporally over planet Earth, Stoch. Environ. Res. Risk Assess. 33 (2019), 1593-1608, arXiv:1701.06010.
  2. Apanasovich T., Genton M.G., Cross-covariance functions for multivariate random fields based on latent dimensions, Biometrika 97 (2010), 15-30.
  3. Barbosa V.S., Menegatto V.A., Strictly positive definite kernels on compact two-point homogeneous spaces, Math. Inequal. Appl. 19 (2016), 743-756, arXiv:1505.00591.
  4. Barbosa V.S., Menegatto V.A., Strict positive definiteness on products of compact two-point homogeneous spaces, Integral Transforms Spec. Funct. 28 (2017), 56-73, arXiv:1605.07071.
  5. Berg C., Christensen J.P.R., Ressel P., Harmonic analysis on semigroups. Theory of positive definite and related functions, Graduate Texts in Mathematics, Vol. 100, Springer-Verlag, New York, 1984.
  6. Berg C., Peron A.P., Porcu E., Schoenberg's theorem for real and complex Hilbert spheres revisited, J. Approx. Theory 228 (2018), 58-78, arXiv:1701.07214.
  7. Berg C., Porcu E., From Schoenberg coefficients to Schoenberg functions, Constr. Approx. 45 (2017), 217-241, arXiv:1505.05682.
  8. Chen D., Menegatto V.A., Sun X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733-2740.
  9. Gangolli R., Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121-226.
  10. Gneiting T., Nonseparable, stationary covariance functions for space-time data, J. Amer. Statist. Assoc. 97 (2002), 590-600.
  11. Guella J.C., Menegatto V.A., Strictly positive definite kernels on a product of spheres, J. Math. Anal. Appl. 435 (2016), 286-301.
  12. Guella J.C., Menegatto V.A., Schoenberg's theorem for positive definite functions on products: a unifying framework, J. Fourier Anal. Appl. 25 (2019), 1424-1446.
  13. Guella J.C., Menegatto V.A., Peron A.P., An extension of a theorem of Schoenberg to products of spheres, Banach J. Math. Anal. 10 (2016), 671-685, arXiv:1503.08174.
  14. Guella J.C., Menegatto V.A., Peron A.P., Strictly positive definite kernels on a product of spheres II, SIGMA 12 (2016), 103, 15 pages, arXiv:1605.09775.
  15. Guella J.C., Menegatto V.A., Peron A.P., Strictly positive definite kernels on a product of circles, Positivity 21 (2017), 329-342, arXiv:1505.01169.
  16. Horn R.A., Johnson C.R., Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
  17. Kapil Y., Pal R., Aggarwal A., Singh M., Conditionally negative definite functions, Mediterr. J. Math. 15 (2018), 199, 12 pages.
  18. Koumandos S., Pedersen H.L., On asymptotic expansions of generalized Stieltjes functions, Comput. Methods Funct. Theory 15 (2015), 93-115.
  19. Koumandos S., Pedersen H.L., On generalized Stieltjes functions, Constr. Approx. 50 (2019), 129-144, arXiv:1706.00606.
  20. Menegatto V.A., Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994), 91-101.
  21. Menegatto V.A., Positive definite functions on products of metric spaces via generalized Stieltjes functions, Proc. Amer. Math. Soc. 148 (2020), 4781-4795.
  22. Menegatto V.A., Oliveira C., Porcu E., Gneiting class, semi-metric spaces, and isometric embeddings, Constr. Math. Anal. 3 (2020), 85-95.
  23. Reams R., Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra Appl. 288 (1999), 35-43.
  24. Schilling R.L., Song R., Vondraček Z., Bernstein functions. Theory and applications, 2nd ed., De Gruyter Studies in Mathematics, Vol. 37, Walter de Gruyter & Co., Berlin, 2012.
  25. Schoenberg I.J., Metric spaces and completely monotone functions, Ann. of Math. 39 (1938), 811-841.
  26. Schoenberg I.J., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
  27. Shapiro V.L., Fourier series in several variables with applications to partial differential equations, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011.
  28. Sokal A.D., Real-variables characterization of generalized Stieltjes functions, Expo. Math. 28 (2010), 179-185, arXiv:0902.0065.
  29. Wells J.H., Williams L.R., Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 84, Springer-Verlag, New York - Heidelberg, 1975.
  30. Wendland H., Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, Vol. 17, Cambridge University Press, Cambridge, 2005.
  31. Widder D.V., The Stieltjes transform, Trans. Amer. Math. Soc. 43 (1938), 7-60.
  32. Widder D.V., The Laplace Transform, Princeton Mathematical Series, Vol. 6, Princeton University Press, Princeton, N. J., 1941.

Previous article  Next article  Contents of Volume 16 (2020)