|
SIGMA 16 (2020), 117, 15 pages arXiv:2006.12217
https://doi.org/10.3842/SIGMA.2020.117
A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces
Victor S. Barbosa a and Valdir A. Menegatto b
a) Centro Tecnológico de Joinville-UFSC, Rua Dona Francisca, 8300. Bloco U, 89219-600 Joinville SC, Brazil
b) Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil
Received June 23, 2020, in final form November 07, 2020; Published online November 19, 2020
Abstract
This paper is concerned with the construction of positive definite functions on a cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and its many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.
Key words: positive definite functions; generalized Stieltjes functions; Bernstein functions; Gneiting's model; products of metric spaces.
pdf (368 kb)
tex (20 kb)
References
- Alegría A., Porcu E., Furrer R., Mateu J., Covariance functions for multivariate Gaussian fields evolving temporally over planet Earth, Stoch. Environ. Res. Risk Assess. 33 (2019), 1593-1608, arXiv:1701.06010.
- Apanasovich T., Genton M.G., Cross-covariance functions for multivariate random fields based on latent dimensions, Biometrika 97 (2010), 15-30.
- Barbosa V.S., Menegatto V.A., Strictly positive definite kernels on compact two-point homogeneous spaces, Math. Inequal. Appl. 19 (2016), 743-756, arXiv:1505.00591.
- Barbosa V.S., Menegatto V.A., Strict positive definiteness on products of compact two-point homogeneous spaces, Integral Transforms Spec. Funct. 28 (2017), 56-73, arXiv:1605.07071.
- Berg C., Christensen J.P.R., Ressel P., Harmonic analysis on semigroups. Theory of positive definite and related functions, Graduate Texts in Mathematics, Vol. 100, Springer-Verlag, New York, 1984.
- Berg C., Peron A.P., Porcu E., Schoenberg's theorem for real and complex Hilbert spheres revisited, J. Approx. Theory 228 (2018), 58-78, arXiv:1701.07214.
- Berg C., Porcu E., From Schoenberg coefficients to Schoenberg functions, Constr. Approx. 45 (2017), 217-241, arXiv:1505.05682.
- Chen D., Menegatto V.A., Sun X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733-2740.
- Gangolli R., Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121-226.
- Gneiting T., Nonseparable, stationary covariance functions for space-time data, J. Amer. Statist. Assoc. 97 (2002), 590-600.
- Guella J.C., Menegatto V.A., Strictly positive definite kernels on a product of spheres, J. Math. Anal. Appl. 435 (2016), 286-301.
- Guella J.C., Menegatto V.A., Schoenberg's theorem for positive definite functions on products: a unifying framework, J. Fourier Anal. Appl. 25 (2019), 1424-1446.
- Guella J.C., Menegatto V.A., Peron A.P., An extension of a theorem of Schoenberg to products of spheres, Banach J. Math. Anal. 10 (2016), 671-685, arXiv:1503.08174.
- Guella J.C., Menegatto V.A., Peron A.P., Strictly positive definite kernels on a product of spheres II, SIGMA 12 (2016), 103, 15 pages, arXiv:1605.09775.
- Guella J.C., Menegatto V.A., Peron A.P., Strictly positive definite kernels on a product of circles, Positivity 21 (2017), 329-342, arXiv:1505.01169.
- Horn R.A., Johnson C.R., Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
- Kapil Y., Pal R., Aggarwal A., Singh M., Conditionally negative definite functions, Mediterr. J. Math. 15 (2018), 199, 12 pages.
- Koumandos S., Pedersen H.L., On asymptotic expansions of generalized Stieltjes functions, Comput. Methods Funct. Theory 15 (2015), 93-115.
- Koumandos S., Pedersen H.L., On generalized Stieltjes functions, Constr. Approx. 50 (2019), 129-144, arXiv:1706.00606.
- Menegatto V.A., Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994), 91-101.
- Menegatto V.A., Positive definite functions on products of metric spaces via generalized Stieltjes functions, Proc. Amer. Math. Soc. 148 (2020), 4781-4795.
- Menegatto V.A., Oliveira C., Porcu E., Gneiting class, semi-metric spaces, and isometric embeddings, Constr. Math. Anal. 3 (2020), 85-95.
- Reams R., Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra Appl. 288 (1999), 35-43.
- Schilling R.L., Song R., Vondraček Z., Bernstein functions. Theory and applications, 2nd ed., De Gruyter Studies in Mathematics, Vol. 37, Walter de Gruyter & Co., Berlin, 2012.
- Schoenberg I.J., Metric spaces and completely monotone functions, Ann. of Math. 39 (1938), 811-841.
- Schoenberg I.J., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
- Shapiro V.L., Fourier series in several variables with applications to partial differential equations, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011.
- Sokal A.D., Real-variables characterization of generalized Stieltjes functions, Expo. Math. 28 (2010), 179-185, arXiv:0902.0065.
- Wells J.H., Williams L.R., Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 84, Springer-Verlag, New York - Heidelberg, 1975.
- Wendland H., Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, Vol. 17, Cambridge University Press, Cambridge, 2005.
- Widder D.V., The Stieltjes transform, Trans. Amer. Math. Soc. 43 (1938), 7-60.
- Widder D.V., The Laplace Transform, Princeton Mathematical Series, Vol. 6, Princeton University Press, Princeton, N. J., 1941.
|
|