Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 113, 31 pages      arXiv:1910.08393      https://doi.org/10.3842/SIGMA.2020.113
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

$q$-Difference Systems for the Jackson Integral of Symmetric Selberg Type

Masahiko Ito
Department of Mathematical Sciences, University of the Ryukyus, Okinawa 903-0213, Japan

Received April 29, 2020, in final form October 29, 2020; Published online November 08, 2020

Abstract
We provide an explicit expression for the first order $q$-difference system for the Jackson integral of symmetric Selberg type. The $q$-difference system gives a generalization of $q$-analog of contiguous relations for the Gauss hypergeometric function. As a basis of the system we use a set of the symmetric polynomials introduced by Matsuo in his study of the $q$-KZ equation. Our main result is an explicit expression for the coefficient matrix of the $q$-difference system in terms of its Gauss matrix decomposition. We introduce a class of symmetric polynomials called interpolation polynomials, which includes Matsuo's polynomials. By repeated use of three-term relations among the interpolation polynomials we compute the coefficient matrix.

Key words: $q$-difference equations; Selberg type integral; contiguous relations; Gauss decomposition.

pdf (529 kb)   tex (32 kb)  

References

  1. Albion S.P., Rains E.M., Warnaar S.O., AFLT-type Selberg integrals, arXiv:2001.05637.
  2. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  3. Aomoto K., Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987), 545-549.
  4. Aomoto K., $q$-analogue of de Rham cohomology associated with Jackson integrals. I, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), 161-164.
  5. Aomoto K., Connection matrices and Riemann-Hilbert problem for $q$-difference equations, in Structure of Solutions of Differential Equations (Katata/Kyoto, 1995), World Sci. Publ., River Edge, NJ, 1996, 51-69.
  6. Aomoto K., On elliptic product formulas for Jackson integrals associated with reduced root systems, J. Algebraic Combin. 8 (1998), 115-126.
  7. Aomoto K., Kato Y., A $q$-analogue of de Rham cohomology associated with Jackson integrals, in Special Functions (Okayama, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, 30-62.
  8. Aomoto K., Kato Y., Gauss decomposition of connection matrices and application to Yang-Baxter equation. I, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 238-242.
  9. Aomoto K., Kato Y., Gauss decomposition of connection matrices for symmetric $A$-type Jackson integrals, Selecta Math. (N.S.) 1 (1995), 623-666.
  10. Aomoto K., Kato Y., Derivation of $q$-difference equation from connection matrix for Selberg type Jackson integrals, J. Differ. Equations Appl. 4 (1998), 247-278.
  11. Askey R., Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal. 11 (1980), 938-951.
  12. Bosnjak G., Mangazeev V.V., Construction of $R$-matrices for symmetric tensor representations related to $U_q(\widehat{sl_n})$, J. Phys. A: Math. Theor. 49 (2016), 495204, 19 pages, arXiv:1607.07968.
  13. Evans R.J., Multidimensional $q$-beta integrals, SIAM J. Math. Anal. 23 (1992), 758-765.
  14. Forrester P.J., Ito M., Difference system for Selberg correlation integrals, J. Phys. A: Math. Theor. 43 (2010), 175202, 19 pages, arXiv:1011.1650.
  15. Forrester P.J., Warnaar S.O., The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 489-534, arXiv:0710.3981.
  16. Habsieger L., Une $q$-intégrale de Selberg et Askey, SIAM J. Math. Anal. 19 (1988), 1475-1489.
  17. Ishikawa M., Zeng J., Hankel hyperpfaffian calculations and Selberg integrals, arXiv:2008.09776.
  18. Ito M., Forrester P.J., A bilateral extension of the $q$-Selberg integral, Trans. Amer. Math. Soc. 369 (2017), 2843-2878, arXiv:1309.0001.
  19. Ito M., Noumi M., Connection formula for the Jackson integral of type $A_n$ and elliptic Lagrange interpolation, SIGMA 14 (2018), 077, 42 pages, arXiv:1801.07041.
  20. Kadell K.W.J., A proof of Askey's conjectured $q$-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Anal. 19 (1988), 969-986.
  21. Kaneko J., Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993), 1086-1110.
  22. Kaneko J., $q$-Selberg integrals and Macdonald polynomials, Ann. Sci. École Norm. Sup. (4) 29 (1996), 583-637.
  23. Kim J.S., Okada S., A new $q$-Selberg integral, Schur functions, and Young books, Ramanujan J. 42 (2017), 43-57, arXiv:1412.7914.
  24. Kim J.S., Stanton D., On $q$-integrals over order polytopes, Adv. Math. 308 (2017), 1269-1317, arXiv:1608.03342.
  25. Kim J.S., Yoo M., Hook length property of $d$-complete posets via $q$-integrals, J. Combin. Theory Ser. A 162 (2019), 167-221, arXiv:1708.09109.
  26. Kuniba A., Okado M., Yoneyama A., Matrix product solution to the reflection equation associated with a coideal subalgebra of $U_q\big(A^{(1)}_{n-1}\big)$, Lett. Math. Phys. 109 (2019), 2049-2067, arXiv:1812.03767.
  27. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  28. Matsuo A., Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations, Comm. Math. Phys. 151 (1993), 263-273.
  29. Matsuo A., Quantum algebra structure of certain Jackson integrals, Comm. Math. Phys. 157 (1993), 479-498.
  30. Mimachi K., Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya Math. J. 116 (1989), 149-161.
  31. Mimachi K., Holonomic $q$-difference system of the first order associated with a Jackson integral of Selberg type, Duke Math. J. 73 (1994), 453-468.
  32. Rimányi R., Tarasov V., Varchenko A., Zinn-Justin P., Extended Joseph polynomials, quantized conformal blocks, and a $q$-Selberg type integral, J. Geom. Phys. 62 (2012), 2188-2207, arXiv:1110.2187.
  33. Varchenko A., Quantized Knizhnik-Zamolodchikov equations, quantum Yang-Baxter equation, and difference equations for $q$-hypergeometric functions, Comm. Math. Phys. 162 (1994), 499-528.
  34. Varchenko A., Special functions, KZ type equations, and representation theory, CBMS Regional Conference Series in Mathematics, Vol. 98, Amer. Math. Soc., Providence, RI, 2003.
  35. Warnaar S.O., $q$-Selberg integrals and Macdonald polynomials, Ramanujan J. 10 (2005), 237-268.

Previous article  Next article  Contents of Volume 16 (2020)