|
SIGMA 16 (2020), 113, 31 pages arXiv:1910.08393
https://doi.org/10.3842/SIGMA.2020.113
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory
$q$-Difference Systems for the Jackson Integral of Symmetric Selberg Type
Masahiko Ito
Department of Mathematical Sciences, University of the Ryukyus, Okinawa 903-0213, Japan
Received April 29, 2020, in final form October 29, 2020; Published online November 08, 2020
Abstract
We provide an explicit expression for the first order $q$-difference system for the Jackson integral of symmetric Selberg type. The $q$-difference system gives a generalization of $q$-analog of contiguous relations for the Gauss hypergeometric function. As a basis of the system we use a set of the symmetric polynomials introduced by Matsuo in his study of the $q$-KZ equation. Our main result is an explicit expression for the coefficient matrix of the $q$-difference system in terms of its Gauss matrix decomposition. We introduce a class of symmetric polynomials called interpolation polynomials, which includes Matsuo's polynomials. By repeated use of three-term relations among the interpolation polynomials we compute the coefficient matrix.
Key words: $q$-difference equations; Selberg type integral; contiguous relations; Gauss decomposition.
pdf (529 kb)
tex (32 kb)
References
- Albion S.P., Rains E.M., Warnaar S.O., AFLT-type Selberg integrals, arXiv:2001.05637.
- Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
- Aomoto K., Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987), 545-549.
- Aomoto K., $q$-analogue of de Rham cohomology associated with Jackson integrals. I, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), 161-164.
- Aomoto K., Connection matrices and Riemann-Hilbert problem for $q$-difference equations, in Structure of Solutions of Differential Equations (Katata/Kyoto, 1995), World Sci. Publ., River Edge, NJ, 1996, 51-69.
- Aomoto K., On elliptic product formulas for Jackson integrals associated with reduced root systems, J. Algebraic Combin. 8 (1998), 115-126.
- Aomoto K., Kato Y., A $q$-analogue of de Rham cohomology associated with Jackson integrals, in Special Functions (Okayama, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, 30-62.
- Aomoto K., Kato Y., Gauss decomposition of connection matrices and application to Yang-Baxter equation. I, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 238-242.
- Aomoto K., Kato Y., Gauss decomposition of connection matrices for symmetric $A$-type Jackson integrals, Selecta Math. (N.S.) 1 (1995), 623-666.
- Aomoto K., Kato Y., Derivation of $q$-difference equation from connection matrix for Selberg type Jackson integrals, J. Differ. Equations Appl. 4 (1998), 247-278.
- Askey R., Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal. 11 (1980), 938-951.
- Bosnjak G., Mangazeev V.V., Construction of $R$-matrices for symmetric tensor representations related to $U_q(\widehat{sl_n})$, J. Phys. A: Math. Theor. 49 (2016), 495204, 19 pages, arXiv:1607.07968.
- Evans R.J., Multidimensional $q$-beta integrals, SIAM J. Math. Anal. 23 (1992), 758-765.
- Forrester P.J., Ito M., Difference system for Selberg correlation integrals, J. Phys. A: Math. Theor. 43 (2010), 175202, 19 pages, arXiv:1011.1650.
- Forrester P.J., Warnaar S.O., The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 489-534, arXiv:0710.3981.
- Habsieger L., Une $q$-intégrale de Selberg et Askey, SIAM J. Math. Anal. 19 (1988), 1475-1489.
- Ishikawa M., Zeng J., Hankel hyperpfaffian calculations and Selberg integrals, arXiv:2008.09776.
- Ito M., Forrester P.J., A bilateral extension of the $q$-Selberg integral, Trans. Amer. Math. Soc. 369 (2017), 2843-2878, arXiv:1309.0001.
- Ito M., Noumi M., Connection formula for the Jackson integral of type $A_n$ and elliptic Lagrange interpolation, SIGMA 14 (2018), 077, 42 pages, arXiv:1801.07041.
- Kadell K.W.J., A proof of Askey's conjectured $q$-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Anal. 19 (1988), 969-986.
- Kaneko J., Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993), 1086-1110.
- Kaneko J., $q$-Selberg integrals and Macdonald polynomials, Ann. Sci. École Norm. Sup. (4) 29 (1996), 583-637.
- Kim J.S., Okada S., A new $q$-Selberg integral, Schur functions, and Young books, Ramanujan J. 42 (2017), 43-57, arXiv:1412.7914.
- Kim J.S., Stanton D., On $q$-integrals over order polytopes, Adv. Math. 308 (2017), 1269-1317, arXiv:1608.03342.
- Kim J.S., Yoo M., Hook length property of $d$-complete posets via $q$-integrals, J. Combin. Theory Ser. A 162 (2019), 167-221, arXiv:1708.09109.
- Kuniba A., Okado M., Yoneyama A., Matrix product solution to the reflection equation associated with a coideal subalgebra of $U_q\big(A^{(1)}_{n-1}\big)$, Lett. Math. Phys. 109 (2019), 2049-2067, arXiv:1812.03767.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
- Matsuo A., Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations, Comm. Math. Phys. 151 (1993), 263-273.
- Matsuo A., Quantum algebra structure of certain Jackson integrals, Comm. Math. Phys. 157 (1993), 479-498.
- Mimachi K., Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya Math. J. 116 (1989), 149-161.
- Mimachi K., Holonomic $q$-difference system of the first order associated with a Jackson integral of Selberg type, Duke Math. J. 73 (1994), 453-468.
- Rimányi R., Tarasov V., Varchenko A., Zinn-Justin P., Extended Joseph polynomials, quantized conformal blocks, and a $q$-Selberg type integral, J. Geom. Phys. 62 (2012), 2188-2207, arXiv:1110.2187.
- Varchenko A., Quantized Knizhnik-Zamolodchikov equations, quantum Yang-Baxter equation, and difference equations for $q$-hypergeometric functions, Comm. Math. Phys. 162 (1994), 499-528.
- Varchenko A., Special functions, KZ type equations, and representation theory, CBMS Regional Conference Series in Mathematics, Vol. 98, Amer. Math. Soc., Providence, RI, 2003.
- Warnaar S.O., $q$-Selberg integrals and Macdonald polynomials, Ramanujan J. 10 (2005), 237-268.
|
|