Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 111, 133 pages      arXiv:1709.02989      https://doi.org/10.3842/SIGMA.2020.111
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

Elliptic Double Affine Hecke Algebras

Eric M. Rains
Department of Mathematics, California Institute of Technology, USA

Received December 19, 2019, in final form October 16, 2020; Published online November 05, 2020

Abstract
We give a construction of an affine Hecke algebra associated to any Coxeter group acting on an abelian variety by reflections; in the case of an affine Weyl group, the result is an elliptic analogue of the usual double affine Hecke algebra. As an application, we use a variant of the $\tilde{C}_n$ version of the construction to construct a flat noncommutative deformation of the $n$th symmetric power of any rational surface with a smooth anticanonical curve, and give a further construction which conjecturally is a corresponding deformation of the Hilbert scheme of points.

Key words: elliptic curves; Hecke algebras; noncommutative deformations.

pdf (1145 kb)   tex (163 kb)  

References

  1. Artin M., Tate J., Van den Bergh M., Some algebras associated to automorphisms of elliptic curves, in The Grothendieck Festschrift, Vol. I, Progr. Math., Vol. 86, Editors P. Cartier, L. Illusie, N.M. Katz, G. Laumon, Yu.I. Manin, Birkhäuser Boston, Boston, MA, 2007, 33-85.
  2. Artin M., Van den Bergh M., Twisted homogeneous coordinate rings, J. Algebra 133 (1990), 249-271.
  3. Bondal A.I., Polishchuk A.E., Homological properties of associative algebras: the method of helices, Izv. Math. 42 (1994), 219-260.
  4. Brion M., Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), 347-371.
  5. Conway J.H., Sloane N.J.A., Low-dimensional lattices. II. Subgroups of ${\rm GL}(n,{\mathbb Z})$, Proc. Roy. Soc. London Ser. A 419 (1988), 29-68.
  6. van Diejen J.F., Integrability of difference Calogero-Moser systems, J. Math. Phys. 35 (1994), 2983-3004.
  7. van Diejen J.F., Difference Calogero-Moser systems and finite Toda chains, J. Math. Phys. 36 (1995), 1299-1323.
  8. Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, Vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985.
  9. Ellingsrud G., Göttsche L., Lehn M., On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), 81-100, arXiv:math.AG/9904095.
  10. Fulton W., Olsson M., The Picard group of ${\mathcal M}_{1,1}$, Algebra Number Theory 4 (2010), 87-104, arXiv:0704.2214.
  11. Ginzburg V., Kapranov M., Vasserot E., Residue construction of Hecke algebras, Adv. Math. 128 (1997), 1-19, arXiv:alg-geom/9512017.
  12. Gordon I., Stafford J.T., Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005), 222-274, arXiv:math.RA/0407516.
  13. Gritsenko V., Modular forms and moduli spaces of abelian and $K3$ surfaces, St. Petersburg Math. J. 6 (1995), 1179-1208.
  14. Gritsenko V.A., Fourier-Jacobi functions in $n$ variables, J. Soviet Math. 53 (1991), 243-252.
  15. Katz N.M., Mazur B., Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, Vol. 108, Princeton University Press, Princeton, NJ, 1985.
  16. Komori Y., Hikami K., Quantum integrability of the generalized elliptic Ruijsenaars models, J. Phys. A: Math. Gen. 30 (1997), 4341-4364.
  17. Krieg A., Jacobi forms of several variables and the Maaß space, J. Number Theory 56 (1996), 242-255.
  18. Looijenga E., Root systems and elliptic curves, Invent. Math. 38 (1976), 17-32.
  19. Lusztig G., Singularities, character formulas, and a $q$-analog of weight multiplicities, in Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), Ast'erisque, Vol. 101, Soc. Math. France, Paris, 1983, 208-229.
  20. Nevins T.A., Stafford J.T., Sklyanin algebras and Hilbert schemes of points, Adv. Math. 210 (2007), 405-478, arXiv:math.AG/0310045.
  21. Oblomkov A., Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not. 2004 (2004), 877-912, arXiv:math.RT/0306393.
  22. Polishchuk A., Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, Vol. 153, Cambridge University Press, Cambridge, 2003.
  23. Rains E.M., $BC_n$-symmetric Abelian functions, Duke Math. J. 135 (2006), 99-180, arXiv:math.CO/0402113.
  24. Rains E.M., Transformations of elliptic hypergeometric integrals, Ann. of Math. 171 (2010), 169-243, arXiv:math.QA/0309252.
  25. Rains E.M., Generalized Hitchin systems on rational surfaces, arXiv:1307.4033.
  26. Rains E.M., The noncommutative geometry of elliptic difference equations, arXiv:1607.08876.
  27. Rains E.M., Multivariate quadratic transformations and the interpolation kernel, SIGMA 14 (2018), 019, 69 pages, arXiv:1408.0305.
  28. Rains E.M., Ruijsenaars S., Difference operators of Sklyanin and van Diejen type, Comm. Math. Phys. 320 (2013), 851-889, arXiv:1203.0042.
  29. Rosengren H., Elliptic hypergeometric functions, in Lectures on Orthogonal Polynomials and Special Functions, Cambridge University Press, Cambridge, to appear, arXiv:1608.06161.
  30. Ruijsenaars S.N.M., First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), 1069-1146.
  31. Saito K., Extended affine root systems. II. Flat invariants, Publ. Res. Inst. Math. Sci. 26 (1990), 15-78.
  32. Sekiguchi T., On projective normality of Abelian varieties. II, J. Math. Soc. Japan 29 (1977), 709-727.
  33. Shioda T., On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59.
  34. Silverman J.H., The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, Vol. 106, Springer, Dordrecht, 2009.
  35. Spiridonov V.P., Warnaar S.O., Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006), 91-132, arXiv:math.CA/0411044.
  36. Stembridge J.R., Tight quotients and double quotients in the Bruhat order, Electron. J. Combin. 11 (2005), 14, 41 pages.
  37. Van den Bergh M., A translation principle for the four-dimensional Sklyanin algebras, J. Algebra 184 (1996), 435-490.
  38. Van den Bergh M., Non-commutative $\mathbb{P}^1$-bundles over commutative schemes, Trans. Amer. Math. Soc. 364 (2012), 6279-6313, arXiv:math.RA/0102005.

Previous article  Next article  Contents of Volume 16 (2020)