Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 108, 25 pages      arXiv:1809.00534      https://doi.org/10.3842/SIGMA.2020.108

Controlled Loewner-Kufarev Equation Embedded into the Universal Grassmannian

Takafumi Amaba a and Roland Friedrich b
a) Fukuoka University, 8-19-1 Nanakuma, Jônan-ku, Fukuoka, 814-0180, Japan
b) ETH Zürich, D-GESS, CH-8092 Zurich, Switzerland

Received June 30, 2020, in final form October 22, 2020; Published online October 29, 2020

Abstract
We introduce the class of controlled Loewner-Kufarev equations and consider aspects of their algebraic nature. We lift the solution of such a controlled equation to the (Sato)-Segal-Wilson Grassmannian, and discuss its relation with the tau-function. We briefly highlight relations of the Grunsky matrix with integrable systems and conformal field theory. Our main result is the explicit formula which expresses the solution of the controlled equation in terms of the signature of the driving function through the action of words in generators of the Witt algebra.

Key words: Loewner-Kufarev equation; Grassmannian; conformal field theory; Witt algebra; free probability theory; Faber polynomial; Grunsky coefficient; signature.

pdf (510 kb)   tex (33 kb)  

References

  1. Alvarez-Gaumé L., Gomez C., Moore G., Vafa C., Strings in the operator formalism, Nuclear Phys. B 303 (1988), 455-521.
  2. Amaba T., Friedrich R., Modulus of continuity of controlled Loewner-Kufarev equations and random matrices, Anal. Math. Phys. 10 (2020), 23, 29 pages, arXiv:1809.00536.
  3. Amaba T., Friedrich R., Murayama T., Univalence and holomorphic extension of the solution to $\omega$-controlled Loewner-Kufarev equations, J. Differential Equations 269 (2020), 2697-2704, arXiv:1909.13666.
  4. Baudoin F., An introduction to the geometry of stochastic flows, Imperial College Press, London, 2004.
  5. Bracci F., Contreras M.D., Díaz-Madrigal S., Vasil'ev A., Classical and stochastic Löwner-Kufarev equations, in Harmonic and Complex Analysis and its Applications, Trends Math., Birkhäuser/Springer, Cham, 2014, 39-134.
  6. Doyon B., Conformal loop ensembles and the stress-energy tensor, Lett. Math. Phys. 103 (2013), 233-284, arXiv:1209.1560.
  7. Duplantier B., Nguyen C., Nguyen N., Zinsmeister M., The coefficient problem and multifractality of whole-plane SLE & LLE, Ann. Henri Poincaré 16 (2015), 1311-1395, arXiv:1211.2451.
  8. Ellacott S.W., A survey of Faber methods in numerical approximation, Comput. Math. Appl. Part B 12 (1986), 1103-1107.
  9. Faber G., Über polynomische Entwickelungen, Math. Ann. 57 (1903), 389-408.
  10. Friedrich R., The global geometry of stochastic Løewner evolutions, in Probabilistic Approach to Geometry, Adv. Stud. Pure Math., Vol. 57, Math. Soc. Japan, Tokyo, 2010, 79-117, arXiv:0906.5328.
  11. Friedrich R., Kalkkinen J., On conformal field theory and stochastic Loewner evolution, Nuclear Phys. B 687 (2004), 279-302, arXiv:hep-th/0308020.
  12. Hidalgo R.A., Markina I., Vasil'ev A., Finite dimensional grading of the Virasoro algebra, Georgian Math. J. 14 (2007), 419-434.
  13. Johnston E., The Faber transform and analytic continuation, Proc. Amer. Math. Soc. 103 (1988), 237-243.
  14. Kawamoto N., Namikawa Y., Tsuchiya A., Yamada Y., Geometric realization of conformal field theory on Riemann surfaces, Comm. Math. Phys. 116 (1988), 247-308.
  15. Kirillov A.A., Yuriev D.V., Representations of the Virasoro algebra by the orbit method, J. Geom. Phys. 5 (1988), 351-363.
  16. Kontsevich M., CFT, SLE and phase boundaries, Preprint, Arbeitstagung, MPI Bonn, 2003.
  17. Krichever I.M., Algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solutions, Sov. Math. Dokl. 17 (1976), 394-397.
  18. Krichever I.M., Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12-26.
  19. Krichever I.M., Methods of algebraic geometry in the theory of non-linear equations, Russian Math. Surveys 32 (1977), no. 6, 185-213.
  20. Kufareff P.P., On one-parameter families of analytic functions, Math. Sb. 13(55) (1943), 87-118.
  21. Löwner K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), 103-121.
  22. Lyons T.J., Caruana M., Lévy T., Differential equations driven by rough paths, Lecture Notes in Math., Vol. 1908, Springer, Berlin, 2007.
  23. Malliavin P., The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 325-329.
  24. Markina I., Prokhorov D., Vasil'ev A., Sub-Riemannian geometry of the coefficients of univalent functions, J. Funct. Anal. 245 (2007), 475-492, arXiv:math.CV/0608532.
  25. Markina I., Vasil'ev A., Virasoro algebra and dynamics in the space of univalent functions, in Five Lectures in Complex Analysis, Contemp. Math., Vol. 525, Amer. Math. Soc., Providence, RI, 2010, 85-116.
  26. Markina I., Vasil'ev A., Löwner-Kufarev evolution in the Segal-Wilson Grassmannian, in Geometric Methods in Physics, Trends in Mathematics, Editors P. Kielanowski, S.T. Ali, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Birkhäuser/Springer, Basel, 2013, 367-376.
  27. Markina I., Vasil'ev A., Evolution of smooth shapes and integrable systems, Comput. Methods Funct. Theory 16 (2016), 203-229, arXiv:1108.1007.
  28. Mumford D., An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Editor M. Nagata, Kinokuniya Book Store, Tokyo, 1978, 115-153.
  29. Pommerenke C., Univalent functions (with a chapter on quadratic differentials by Gerd Jensen), Studia Mathematica/Mathematische Lehrbücher, Vol. 25, Vandenhoeck & Ruprecht, Göttingen, 1975.
  30. Schiffer M., Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc. 54 (1948), 503-517.
  31. Schramm O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221-288, arXiv:math.PR/9904022.
  32. Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
  33. Sola A., Elementary examples of Loewner chains generated by densities, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2013), 83-101.
  34. Takasaki K., Takebe T., ${\rm SDiff}(2)$ Toda equation - hierarchy, tau function, and symmetries, Lett. Math. Phys. 23 (1991), 205-214, arXiv:hep-th/9112042.
  35. Teo L.-P., Analytic functions and integrable hierarchies - characterization of tau functions, Lett. Math. Phys. 64 (2003), 75-92, arXiv:hep-th/0305005.
  36. Wiegmann P.B., Zabrodin A., Conformal maps and integrable hierarchies, Comm. Math. Phys. 213 (2000), 523-538, arXiv:hep-th/9909147.
  37. Yamada A., Precise variational formulas for abelian differentials, Kodai Math. J. 3 (1980), 114-143.

Previous article  Next article  Contents of Volume 16 (2020)