Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 103, 44 pages      arXiv:1905.07713      https://doi.org/10.3842/SIGMA.2020.103

Symmetries of the Simply-Laced Quantum Connections and Quantisation of Quiver Varieties

Gabriele Rembado
Hausdorff Centre for Mathematics, Endenicher Allee 62, D-53115, Bonn, Germany

Received May 02, 2020, in final form October 13, 2020; Published online October 17, 2020; Reference [3] added November 17, 2020

Abstract
We will exhibit a group of symmetries of the simply-laced quantum connections, generalising the quantum/Howe duality relating KZ and the Casimir connection. These symmetries arise as a quantisation of the classical symmetries of the simply-laced isomonodromy systems, which in turn generalise the Harnad duality. The quantisation of the classical symmetries involves constructing the quantum Hamiltonian reduction of the representation variety of any simply-laced quiver, both in filtered and in deformation quantisation.

Key words: isomonodromic deformations; quantum integrable systems; quiver varieties; deformation quantisation; quantum Hamiltonian reduction.

pdf (675 kb)   tex (56 kb)       [previous version:  pdf (673 kb)   tex (55 kb)]

References

  1. Axelrod S., Della Pietra S., Witten E., Geometric quantization of Chern-Simons gauge theory, J. Differential Geom. 33 (1991), 787-902.
  2. Baumann P., The $q$-Weyl group of a $q$-Schur algebra, hal-00143359.
  3. Bezrukavnikov R., Losev I., Etingof's conjecture for quantized quiver varieties, Invent. Math., to appear, arXiv:1309.1716.
  4. Boalch P.P., Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205, arXiv:2002.00052.
  5. Boalch P.P., Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), 27-50, arXiv:1003.3177.
  6. Boalch P.P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 1-68, arXiv:1107.0874.
  7. Boalch P.P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014), 301-365, arXiv:1111.6228.
  8. Boalch P.P., Yamakawa D., Twisted wild character varieties, arXiv:1512.08091.
  9. Collingwood D.H., McGovern W.M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
  10. Donin J., Mudrov A., Explicit equivariant quantization on coadjoint orbits of ${\rm GL}(n,{\mathbb C})$, Lett. Math. Phys. 62 (2002), 17-32, arXiv:math.QA/0206049.
  11. Donin J., Mudrov A., Quantum coadjoint orbits in ${\rm gl}(n)$, Czechoslovak J. Phys. 52 (2002), 1207-1212.
  12. Etingof P., Calogero-Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007.
  13. Etingof P., Schiffmann O., Lectures on quantum groups, Lectures in Mathematical Physics, International Press, Boston, MA, 1998.
  14. Felder G., Markov Y., Tarasov V., Varchenko A., Differential equations compatible with KZ equations, Math. Phys. Anal. Geom. 3 (2000), 139-177, arXiv:math.QA/0001184.
  15. Harnad J., Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337-365, arXiv:hep-th/9301076.
  16. Hitchin N.J., Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347-380.
  17. Jimbo M., Miwa T., Môri Y., Sato M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D 1 (1980), 80-158.
  18. Kirillov Jr. A.A., Quiver representations and quiver varieties, Graduate Studies in Mathematics, Vol. 174, Amer. Math. Soc., Providence, RI, 2016.
  19. Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103.
  20. Le Bruyn L., Procesi C., Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.
  21. Losev I., Deformations of symplectic singularities and orbit method for semisimple Lie algebras, arXiv:1605.00592.
  22. Millson J.J., Toledano Laredo V., Casimir operators and monodromy representations of generalised braid groups, Transform. Groups 10 (2005), 217-254, arXiv:math.QA/0305062.
  23. Nagoya H., Yamada Y., Symmetries of quantum Lax equations for the Painlevé equations, Ann. Henri Poincaré 15 (2014), 313-344, arXiv:1206.5963.
  24. Rembado G., Simply-laced quantum connections generalising KZ, Comm. Math. Phys. 368 (2019), 1-54, arXiv:1704.08616.
  25. Schedler T., A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. 2005 (2005), 725-760, arXiv:math.QA/0406200.
  26. Schedler T., Deformations of algebras in noncommutative geometry, in Noncommutative algebraic geometry, Math. Sci. Res. Inst. Publ., Vol. 64, Cambridge University Press, New York, 2016, 71-165, arXiv:1212.0914.
  27. Schlesinger L., Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte, J. Reine Angew. Math. 129 (1905), 287-294.
  28. Toledano Laredo V., A Kohno-Drinfeld theorem for quantum Weyl groups, Duke Math. J. 112 (2002), 421-451, arXiv:math.QA/0009181.
  29. Witten E., Quantization of Chern-Simons gauge theory with complex gauge group, Comm. Math. Phys. 137 (1991), 29-66.

Previous article  Next article  Contents of Volume 16 (2020)