|
SIGMA 16 (2020), 103, 44 pages arXiv:1905.07713
https://doi.org/10.3842/SIGMA.2020.103
Symmetries of the Simply-Laced Quantum Connections and Quantisation of Quiver Varieties
Gabriele Rembado
Hausdorff Centre for Mathematics, Endenicher Allee 62, D-53115, Bonn, Germany
Received May 02, 2020, in final form October 13, 2020; Published online October 17, 2020; Reference [3] added November 17, 2020
Abstract
We will exhibit a group of symmetries of the simply-laced quantum connections, generalising the quantum/Howe duality relating KZ and the Casimir connection. These symmetries arise as a quantisation
of the classical symmetries of the simply-laced isomonodromy systems, which in turn generalise the Harnad duality. The quantisation of the classical symmetries involves constructing the quantum
Hamiltonian reduction of the representation variety of any simply-laced quiver, both in filtered and in deformation quantisation.
Key words: isomonodromic deformations; quantum integrable systems; quiver varieties; deformation quantisation; quantum Hamiltonian reduction.
pdf (675 kb)
tex (56 kb)
[previous version:
pdf (673 kb)
tex (55 kb)]
References
- Axelrod S., Della Pietra S., Witten E., Geometric quantization of Chern-Simons gauge theory, J. Differential Geom. 33 (1991), 787-902.
- Baumann P., The $q$-Weyl group of a $q$-Schur algebra, hal-00143359.
- Bezrukavnikov R., Losev I., Etingof's conjecture for quantized quiver varieties, Invent. Math., to appear, arXiv:1309.1716.
- Boalch P.P., Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205, arXiv:2002.00052.
- Boalch P.P., Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), 27-50, arXiv:1003.3177.
- Boalch P.P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 1-68, arXiv:1107.0874.
- Boalch P.P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014), 301-365, arXiv:1111.6228.
- Boalch P.P., Yamakawa D., Twisted wild character varieties, arXiv:1512.08091.
- Collingwood D.H., McGovern W.M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
- Donin J., Mudrov A., Explicit equivariant quantization on coadjoint orbits of ${\rm GL}(n,{\mathbb C})$, Lett. Math. Phys. 62 (2002), 17-32, arXiv:math.QA/0206049.
- Donin J., Mudrov A., Quantum coadjoint orbits in ${\rm gl}(n)$, Czechoslovak J. Phys. 52 (2002), 1207-1212.
- Etingof P., Calogero-Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007.
- Etingof P., Schiffmann O., Lectures on quantum groups, Lectures in Mathematical Physics, International Press, Boston, MA, 1998.
- Felder G., Markov Y., Tarasov V., Varchenko A., Differential equations compatible with KZ equations, Math. Phys. Anal. Geom. 3 (2000), 139-177, arXiv:math.QA/0001184.
- Harnad J., Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337-365, arXiv:hep-th/9301076.
- Hitchin N.J., Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347-380.
- Jimbo M., Miwa T., Môri Y., Sato M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D 1 (1980), 80-158.
- Kirillov Jr. A.A., Quiver representations and quiver varieties, Graduate Studies in Mathematics, Vol. 174, Amer. Math. Soc., Providence, RI, 2016.
- Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103.
- Le Bruyn L., Procesi C., Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.
- Losev I., Deformations of symplectic singularities and orbit method for semisimple Lie algebras, arXiv:1605.00592.
- Millson J.J., Toledano Laredo V., Casimir operators and monodromy representations of generalised braid groups, Transform. Groups 10 (2005), 217-254, arXiv:math.QA/0305062.
- Nagoya H., Yamada Y., Symmetries of quantum Lax equations for the Painlevé equations, Ann. Henri Poincaré 15 (2014), 313-344, arXiv:1206.5963.
- Rembado G., Simply-laced quantum connections generalising KZ, Comm. Math. Phys. 368 (2019), 1-54, arXiv:1704.08616.
- Schedler T., A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. 2005 (2005), 725-760, arXiv:math.QA/0406200.
- Schedler T., Deformations of algebras in noncommutative geometry, in Noncommutative algebraic geometry, Math. Sci. Res. Inst. Publ., Vol. 64, Cambridge University Press, New York, 2016, 71-165, arXiv:1212.0914.
- Schlesinger L., Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte, J. Reine Angew. Math. 129 (1905), 287-294.
- Toledano Laredo V., A Kohno-Drinfeld theorem for quantum Weyl groups, Duke Math. J. 112 (2002), 421-451, arXiv:math.QA/0009181.
- Witten E., Quantization of Chern-Simons gauge theory with complex gauge group, Comm. Math. Phys. 137 (1991), 29-66.
|
|