Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 097, 57 pages      arXiv:1904.02359      https://doi.org/10.3842/SIGMA.2020.097
Contribution to the Special Issue on Primitive Forms and Related Topics in honor of Kyoji Saito for his 77th birthday

Differential Calculus of Hochschild Pairs for Infinity-Categories

Isamu Iwanari
Mathematical Institute, Tohoku University, 6-3 Aramakiaza, Sendai, Miyagi, 980-8578, Japan

Received February 25, 2020, in final form September 04, 2020; Published online October 02, 2020

Abstract
In this paper, we provide a conceptual new construction of the algebraic structure on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild homology spectrum, which is analogous to the structure of calculus on a manifold. This algebraic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman. We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild cohomology and homology spectra naturally admits the structure of algebra over the operad. Moreover, we prove a generalization to the equivariant context.

Key words: Hochschild cohomology; Hochschild homology; operad; $\infty$-category.

pdf (788 kb)   tex (71 kb)  

References

  1. Armenta M.A., Keller B., Derived invariance of the Tamarkin-Tsygan calculus of an algebra, C. R. Math. Acad. Sci. Paris 357 (2019), 236-240, arXiv:1811.04440.
  2. Ayala D., Francis J., Factorization homology of topological manifolds, J. Topol. 8 (2015), 1045-1084, arXiv:1206.5522.
  3. Barthel T., May J.P., Riehl E., Six model structures for DG-modules over DGAs: model category theory in homological action, New York J. Math. 20 (2014), 1077-1159, arXiv:1310.1159.
  4. Batanin M.A., The Eckmann-Hilton argument and higher operads, Adv. Math. 217 (2008), 334-385, arXiv:math.CT/0207281.
  5. Ben-Zvi D., Francis J., Nadler D., Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010), 909-966, arXiv:0805.0157.
  6. Blumberg A.J., Gepner D., Tabuada G., A universal characterization of higher algebraic $K$-theory, Geom. Topol. 17 (2013), 733-838, arXiv:1001.2282.
  7. Blumberg A.J., Gepner D., Tabuada G., Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014), 191-232, arXiv:1103.3923.
  8. Blumberg A.J., Mandell M.A., Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012), 1053-1120, arXiv:0802.3938.
  9. Cohn L., Differential graded categories are $K$-linear stable $\infty$-categories, arXiv:1308.2587.
  10. Connes A., Cohomologie cyclique et foncteurs ${\rm Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 953-958.
  11. Dolgushev V., Tamarkin D., Tsygan B., Formality of the homotopy calculus algebra of Hochschild (co)chains, arXiv:0807.5117.
  12. Dolgushev V., Tamarkin D., Tsygan B., Formality theorems for Hochschild complexes and their applications, Lett. Math. Phys. 90 (2009), 103-136, arXiv:0901.0069.
  13. Dwyer W.G., Kan D.M., Function complexes in homotopical algebra, Topology 19 (1980), 427-440.
  14. Getzler E., Jones J.D.S., The cyclic homology of crossed product algebras, J. Reine Angew. Math. 445 (1993), 161-174.
  15. Hinich V., Rectification of algebras and modules, Doc. Math. 20 (2015), 879-926, arXiv:1311.4130.
  16. Horel G., Factorization homology and calculus à la Kontsevich Soibelman, J. Noncommut. Geom. 11 (2017), 703-740, arXiv:1307.0322.
  17. Hovey M., Shipley B., Smith J., Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-208, arXiv:math.AT/9801077.
  18. Hoyois M., Homotopy fixed points of the circle action Hochschild hoology, arXiv:1506.07123.
  19. Iwanari I., Kodaira-Spencer morphisms, Hochschild invariants and D-modules, Preprint.
  20. Iwanari I., Period mappings for noncommutative algebras, arXiv:1604.08283.
  21. Joyal A., Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002), 207-222.
  22. Kock J., Toën B., Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture, Compos. Math. 141 (2005), 253-261, arXiv:math.AT/0304442.
  23. Kontsevich M., Soibelman Y., Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry, in Homological Mirror Symmetry, Lecture Notes in Phys., Vol. 757, Springer, Berlin, 2009, 153-219, arXiv:math.RA/0606241.
  24. Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, Vol. 301, Springer-Verlag, Berlin, 1992.
  25. Lurie J., Higher algebra, Preprint, 2017, available at http://people.math.harvard.edu/~lurie/papers/HA.pdf.
  26. Lurie J., Rotation invariance in algebraic K-theory, Preprint.
  27. Lurie J., Higher topos theory, Annals of Mathematics Studies, Vol. 170, Princeton University Press, Princeton, NJ, 2009.
  28. Muro F., Dwyer-Kan homotopy theory of enriched categories, J. Topol. 8 (2015), 377-413, arXiv:1201.1575.
  29. Schwede S., Shipley B., Stable model categories are categories of modules, Topology 42 (2003), 103-153, arXiv:math.AT/0108143.
  30. Schwede S., Shipley B.E., Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000), 491-511, arXiv:math.AT/9801082.
  31. Shipley B., Symmetric spectra and topological Hochschild homology, $K$-Theory 19 (2000), 155-183, arXiv:math.AT/9801079.
  32. Shipley B., A convenient model category for commutative ring spectra, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., Vol. 346, Amer. Math. Soc., Providence, RI, 2004, 473-483.
  33. Tabuada G., Topological Hochschild and cyclic homology for differential graded categories, arXiv:0804.2791.
  34. Thomas J., Kontsevich's Swiss cheese conjecture, Geom. Topol. 20 (2016), 1-48, arXiv:1011.1635.

Previous article  Next article  Contents of Volume 16 (2020)