Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 094, 18 pages      arXiv:2005.03579      https://doi.org/10.3842/SIGMA.2020.094
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

On Abelianity Lines in Elliptic $W$-Algebras

Jean Avan a, Luc Frappat b and Eric Ragoucy b
a) Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, F-95302 Cergy-Pontoise, France
b) Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, Université Grenoble Alpes, USMB, CNRS, F-74000 Annecy, France

Received May 08, 2020, in final form September 22, 2020; Published online September 30, 2020

Abstract
We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $\mathcal{A}_{q,p}\big(\widehat{\mathfrak{gl}}(N)_{c}\big)$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.

Key words: elliptic quantum algebras; $W$-algebras.

pdf (447 kb)   tex (24 kb)  

References

  1. Avan J., Frappat L., Ragoucy E., Deformed Virasoro algebras from elliptic quantum algebras, Comm. Math. Phys. 354 (2017), 753-773, arXiv:1607.05050.
  2. Avan J., Frappat L., Ragoucy E., Dynamical centers for the elliptic quantum algebra ${\mathcal B}_{q,\lambda}\big(\widehat{\mathfrak{gl}}_2\big)_c$, J. Phys. A: Math. Theor. 50 (2017), 394002, 16 pages, arXiv:1703.05223.
  3. Avan J., Frappat L., Ragoucy E., Elliptic deformation of ${\mathcal W}_N$-algebras, SciPost Phys. 6 (2019), 054, 19 pages, arXiv:1810.11410.
  4. Avan J., Frappat L., Rossi M., Sorba P., Central extensions of classical and quantum $q$-Virasoro algebras, Phys. Lett. A 251 (1999), 13-24, arXiv:math.QA/9806065.
  5. Bershtein M., Gonin R., Twisted and non-twisted deformed Virasoro algebra via vertex operators of $U_{q}\big(\widehat{\mathfrak{sl}}_2\big)$, arXiv:2003.12472.
  6. Feigin B., Frenkel E., Quantum $\mathcal W$-algebras and elliptic algebras, Comm. Math. Phys. 178 (1996), 653-678, arXiv:q-alg/9508009,.
  7. Frenkel E., Reshetikhin N., Quantum affine algebras and deformations of the Virasoro and ${\mathcal W}$-algebras, Comm. Math. Phys. 178 (1996), 237-264, arXiv:q-alg/9505025.
  8. Frenkel E., Reshetikhin N., Deformations of $\mathcal W$-algebras associated to simple Lie algebras, Comm. Math. Phys. 197 (1998), 1-32, arXiv:q-alg/9708006.
  9. Jimbo M., Shiraishi J., A coset-type construction for the deformed Virasoro algebra, Lett. Math. Phys. 43 (1998), 173-185, arXiv:q-alg/9709037.
  10. Kimura T., Pestun V., Quiver elliptic ${\mathcal W}$-algebras, Lett. Math. Phys. 108 (2018), 1383-1405, arXiv:1608.04651.
  11. Kimura T., Pestun V., Quiver ${\mathcal W}$-algebras, Lett. Math. Phys. 108 (2018), 1351-1381, arXiv:1512.08533.
  12. Kojima T., Konno H.,The elliptic algebra $U_{p,q}\big(\widehat{\mathfrak{sl}}_N\big)$ and the Drinfeld realization of the elliptic quantum group $\mathcal{B}_{q,\lambda}\big(\widehat{\mathfrak{sl}}_N\big)$, Comm. Math. Phys. 239 (2003), 405-447, math.QA/0210383.
  13. Kojima T., Konno H., The elliptic algebra $U_{q,p}\big(\widehat{\mathfrak{sl}}_N\big)$ and the deformation of $W_N$ algebra, J. Phys. A: Math. Gen. 37 (2004), 371-383, arXiv:math.QA/0307244.
  14. Nieri F., An elliptic Virasoro symmetry in 6d, Lett. Math. Phys. 107 (2017), 2147-2187, arXiv:1511.00574.
  15. Shiraishi J., Free field constructions for the elliptic algebra ${\mathcal A}_{q,p}\big(\widehat{\mathfrak{sl}}_2\big)$ and Baxter's eight-vertex model, Internat. J. Modern Phys. A 19 (2004), 363-380, arXiv:math.QA/0302097.
  16. Shiraishi J., Kubo H., Awata H., Odake S., A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996), 33-51, arXiv:q-alg/9507034.

Previous article  Next article  Contents of Volume 16 (2020)