|
SIGMA 16 (2020), 089, 101 pages arXiv:1510.07255
https://doi.org/10.3842/SIGMA.2020.089
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs
Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations
Sofiane Bouarroudj a, Pavel Grozman b, Alexei Lebedev b, Dimitry Leites ac and Irina Shchepochkina d
a) New York University Abu Dhabi, Division of Science and Mathematics, P.O. Box 129188, United Arab Emirates
b) Equa Simulation AB, Raasundavägen 100, Solna, Sweden
c) Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
d) Independent University of Moscow, Bolshoj Vlasievsky per. 11, 119002 Moscow, Russia
Received September 25, 2019, in final form August 25, 2020; Published online September 24, 2020
Abstract
We overview the classifications of simple finite-dimensional modular Lie algebras. In characteristic 2, their list is wider than that in other characteristics; e.g., it contains desuperizations of modular analogs of complex simple vectorial Lie superalgebras. We consider odd parameters of deformations. For all 15 Weisfeiler gradings of the 5 exceptional families, and one Weisfeiler grading for each of 2 serial simple complex Lie superalgebras (with 2 exceptional subseries), we describe their characteristic-2 analogs - new simple Lie algebras. Descriptions of several of these analogs, and of their desuperizations, are far from obvious. One of the exceptional simple vectorial Lie algebras is a previously unknown deform (the result of a deformation) of the characteristic-2 version of the Lie algebra of divergence-free vector fields; this is a new simple Lie algebra with no analogs in characteristics distinct from 2. In characteristic 2, every simple Lie superalgebra can be obtained from a simple Lie algebra by one of the two methods described in arXiv:1407.1695. Most of the simple Lie superalgebras thus obtained from simple Lie algebras we describe here are new.
Key words: modular vectorial Lie algebra, modular vectorial Lie superalgebra.
pdf (1339 kb)
tex (124 kb)
References
- Alekseevsky D., Leites D., Shchepochkina I., Examples of simple Lie superalgebras of vector fields, C. R. Acad. Bulg. Sci. 34 (1080), 1187-1190.
- Benayadi S., Bouarroudj S., Hajli M., Double extensions of restricted Lie (super)algebras, Arnold Math. J. 6 (2020), 231-269, arXiv:1810.03086.
- Benkart G., Gregory T., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc. 197 (2009), xii+145 pages, arXiv:math.RA/0508373.
- Block R.E., Wilson R.L., Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), 115-259.
- Bouarroudj S., Grozman P., Lebedev A., Leites D., Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, Homology Homotopy Appl. 12 (2010), 237-278, arXiv:0911.0243.
- Bouarroudj S., Grozman P., Lebedev A., Leites D., Derivations and central extensions of simple modular Lie algebras and superalgebras, arXiv:1307.1858.
- Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., New simple Lie algebras in characteristic 2, Int. Math. Res. Not. 2016 (2016), 5695-5726, arXiv:1307.1551.
- Bouarroudj S., Grozman P., Leites D., Deforms of the symmetric modular Lie superalgebras, arXiv:0807.3054.
- Bouarroudj S., Grozman P., Leites D., New simple modular Lie superalgebras as generalized prolongations, Funct. Anal. Appl. 42 (2008), 161-168, arXiv:0704.0130.
- Bouarroudj S., Grozman P., Leites D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA 5 (2009), 060, 63 pages, arXiv:0710.5149.
- Bouarroudj S., Krutov A., Lebedev A., Leites D., Shchepochkina I., Restricted Lie (super)algebras in characteristic 3, Funct. Anal. Appl. 52 (2018), 49-52, arXiv:1809.08582.
- Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Classifications of simple Lie superalgebras in characteristic $2$, arXiv:1407.1695.
- Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Lie algebra deformations in characteristic 2, Math. Res. Lett. 22 (2015), 353-402, arXiv:1301.2781.
- Bouarroudj S., Lebedev A., Wagemann F., Deformations of the Lie algebra ${\mathfrak o}(5)$ in characteristics 3 and 2, Math. Notes 89 (2011), 777-791, arXiv:0909.3572.
- Bouarroudj S., Leites D., Simple Lie superalgebras and nonintegrable distributions in characteristic $p$, J. Math. Sci. 141 (2007), 1390-1398, arXiv:math.RT/0606682.
- Brown G., Families of simple Lie algebras of characteristic two, Comm. Algebra 23 (1995), 941-954.
- Cantarini N., Cheng S.-J., Kac V., Errata to: ''Structure of some $\mathbb Z$-graded Lie superalgebras of vector fields'' [Transform. Groups 4 (1999), 219-272] by Cheng and Kac, Transform. Groups 9 (2004), 399-400.
- Chebochko N.G., Kuznetsov M.I., Integrable cocycles and global deformations of Lie algebra of type $G_2$ in characteristic 2, Comm. Algebra 45 (2017), 2969-2977.
- Cheng S.-J., Kac V.G., Generalized Spencer cohomology and filtered deformations of ${\bf Z}$-graded Lie superalgebras, Adv. Theor. Math. Phys. 2 (1998), 1141-1182, arXiv:math.RT/9805039.
- Cheng S.-J., Kac V.G., Structure of some $\mathbb Z$-graded Lie superalgebras of vector fields, Transform. Groups 4 (1999), 219-272.
- Cheng S.-J., Kac V.G., Addendum: ''Generalized Spencer cohomology and filtered deformations of ${\mathbb Z}$-graded Lie superalgebras'' [Adv. Theor. Math. Phys. 2 (1998), 1141-1182], Adv. Theor. Math. Phys. 8 (2004), 697-709.
- Eick B., Some new simple Lie algebras in characteristic 2, J. Symbolic Comput. 45 (2010), 943-951.
- Etingof P., Koszul duality and the PBW theorem in symmetric tensor categories in positive characteristic, Adv. Math. 327 (2018), 128-160, arXiv:1603.08133.
- Gomis J., París J., Samuel S., Antibracket, antifields and gauge-theory quantization, Phys. Rep. 259 (1995), 1-145, arXiv:hep-th/9412228.
- Grishkov A., Zusmanovich P., Deformations of current Lie algebras. I. Small algebras in characteristic 2, J. Algebra 473 (2017), 513-544, arXiv:1410.3645.
- Grozman P., SuperLie (2013), http://www.equaonline.com/math/SuperLie.
- Grozman P., Leites D., Defining relations for Lie superalgebras with Cartan matrix, Czechoslovak J. Phys. 51 (2001), 1-21, arXiv:hep-th/9702073.
- Grozman P., Leites D., Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$, Lett. Math. Phys. 74 (2005), 229-262, arXiv:math.RT/0509400.
- Grozman P., Leites D., Poletaeva E., Defining relations for classical Lie superalgebras without Cartan matrices, Homology Homotopy Appl. 4 (2002), 259-275, arXiv:math.RT/0202152.
- Iyer U.N., Lebedev A., Leites D., Prolongs of (ortho-)orthogonal Lie (super)algebras in characteristic 2, J. Nonlinear Math. Phys. 17 (2010), suppl. 1, 253-309.
- Iyer U.N., Leites D., Messaoudene M., Shchepochkina I., Examples of simple vectorial Lie algebras in characteristic 2, J. Nonlinear Math. Phys. 17 (2010), suppl. 1, 311-374.
- Kac V.G., Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Math. USSR Izv. 8 (1974), 801-835.
- Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
- Kac V.G., Corrections to: ''Exponentials in Lie algebras of characteristic $p$'' [Math. USSR Izv. 5 (1971), 777-803], Russian Acad. Sci. Izv. Math. 45 (1995), 229.
- Kac V.G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. 139 (1998), 1-55.
- Kac V.G., Classification of supersymmetries, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 319-344, arXiv:math-ph/0302016.
- Kaplansky I., Graded Lie algebras, University Chicago, Chicago, 1975, available at http://www1.osu.cz/ zusmanovich/links/files/kaplansky/.
- Kirillov S.A., Sandwich algebras in simple finite-dimensional Lie algebras, Ph.D. Thesis, Nizhny Novgorod, 1992, for a short summary, see Kirillov S.A., The sandwich subalgebra in Lie algebras of Cartan type, Russian Math. (Iz. VUZ) 36 (1992), 16-23.
- Kochetkov Yu., Leites D., Simple finite-dimensional Lie algebras in characteristic 2 related to superalgebras and on a notion of finite simple group, in Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, August 1989), Contemp. Math., Vol. 131, Editors L.A. Bokut', Yu.L. Ershov, A.I. Kostrikin, Amer. Math. Soc., Providence, RI, 1992, 59-67.
- Kostrikin A.I., The beginnings of modular Lie algebra theory, in Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), de Gruyter, Berlin, 1996, 13-52.
- Kostrikin A.I., Dzhumadil'daev A.S., Modular Lie algebras: new trends, in Algebra (Moscow, 1998), Editor Yu. Bahturin, de Gruyter, Berlin, 2000, 181-203.
- Kotchetkoff Yu.Yu., Déformations des superalgèbres de Buttin et quantification, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 643-645, for details, see id., Deformations of Lie superalgebras, VINITI depositions, 1984, 24 pages (in Russian), Letter to Leites, 1985.
- Krutov A., Lebedev A., On gradings modulo 2 of simple Lie algebras in characteristic 2, SIGMA 14 (2018), 130, 27 pages, arXiv:1711.00638.
- Krutov A., Lebedev A., Leites D., Shchepochkina I., Non-degenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic $2$, Oberwolfach Preprint OWP 2020-02, available at https://publications.mfo.de/handle/mfo/3697.
- Ladilova A.A., Filtered deformations of the Frank algebras, Russian Math. 53 (2009), 43-45.
- Ladilova A.A., Filtered deformations of Lie algebras of series $Y$, J. Math. Sci. 164 (2010), 91-94.
- Ladilova A.A., Filtered deformations of Lie algebras of series $Z$, in Proceedings of the International Conference Dedicated to 100-th Anniversary of V.V. Morozov (Kazan, September 25-30, 2011) and Youth School-Conference ''Modern Problems of Algebra and Mathematical Logic'' (Kazan Federal University, 2011), Kazan Federal University, Russia, 2011, 123-124.
- Lebedev A., Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic 2, J. Nonlinear Math. Phys. 17 (2010), suppl. 1, 217-251.
- Lebedev A., Leites D., On realizations of the Steenrod algebras (with an appendix by P. Deligne), J. Prime Res. Math. 2 (2006), 101-112.
- Leites D., New Lie superalgebras and mechanics, Soviet Math. Doklady 18 (1977), 1277-1280.
- Leites D., Towards classification of simple finite dimensional modular Lie superalgebras, J. Prime Res. Math. 3 (2007), 101-110, arXiv:0710.5638.
- Leites D. (Editor), Seminar on supersymmetries, Vol. 1, Algebra and calculus on supermanifolds, MCCME, Moscow, 2011, a draft in English is available.
- Leites D. (Editor), Seminar on supersymmetries, Vol. 2, Algebra and calculus on supermanifolds. Additional chapters, MCCME, Moscow, to appear.
- Leites D., Serganova V., Metasymmetry and Volichenko algebras, Phys. Lett. B 252 (1990), 91-96, for a correction and additions see [53].
- Leites D., Shchepochkina I., The classification of simple Lie superalgebras of vector fields, Preprint MPIM-2003-28, available at http://www.mpim-bonn.mpg.de/preblob/2178, for a short version, see Toward classification of simple vectorial Lie superalgebra, in Seminar on Supermanifolds (Reports of Stockholm University, 31/1988-14), 235-278, and in Differential Geometric Methods in Theoretical Physics (Davis, CA, 1988), Editors W. Nahm, L. Chau, NATO Adv. Sci. Inst. Ser. B Phys., Vol. 245, Plenum, New York, 1990, 633-651.
- Leites D., Shchepochkina I., On the classification of simple Lie superalgebras of vector fields with polynomial coefficients, an updated and detailed version of citeLS.
- Leites D., Shchepochkina I., Quivers and Lie superalgebras, in Commutative Algebra, Representation Theory and Combinatorics, Conference in Honor of D. Buchsbaum (Northeastern Uversity, Boston, October 18-20, 1997), Editors D. Eisenbud, A. Martsinkovsky, J. Weyman, Northeastern Uversity, Boston, 1997, 67.
- Leites D., Shchepochkina I., How should an antibracket be quantized?, Theoret. and Math. Phys. 126 (2001), 281-306, arXiv:math-ph/0510048.
- Manin Yu.I., Introduction to the theory of schemes, Moscow Lectures, Vol. 1, Springer, Cham, 2018.
- Molotkov V., Infinite-dimensional and colored supermanifolds, J. Nonlinear Math. Phys. 17 (2010), suppl. 1, 375-446.
- Richardson Jr. R.W., On the rigidity of semi-direct products of Lie algebras, Pacific J. Math. 22 (1967), 339-344.
- Rudakov A.N., Deformations of simple Lie algebras, Math. USSR-Izv. 5 (1971), 1120-1126.
- Shchepochkina I., Exceptional simple infinite-dimensional Lie superalgebras, C. R. Acad. Bulg. Sci. 36 (1983), 313-314.
- Shchepochkina I., Five simple exceptional Lie superalgebras of vector fields, Funct. Anal. Appl. 33 (1999), 208-219, arXiv:hep-th/9702121.
- Shchepochkina I., The five exceptional simple Lie superalgebras of vector fields and their fourteen regradings, Represent. Theory 3 (1999), 373-415, arXiv:hep-th/9702121.
- Shchepochkina I., How to realize a Lie algebra by vector fields, Theoret. and Math. Phys. 147 (2006), 821-838, arXiv:math.RT/0509472.
- Shchepochkina I., Post G., Explicit bracket in an exceptional simple Lie superalgebra, Internat. J. Algebra Comput. 8 (1998), 479-495, arXiv:physics/9703022.
- Shen G.Y., Variations of the classical Lie algebra $G_2$ in low characteristics, Nova J. Algebra Geom. 2 (1993), 217-243.
- Skryabin S., The normal shapes of symplectic and contact forms over algebras of divided powers, VINITI deposition, 1986, 8504-B86 (in Russian), arXiv:1906.11496.
- Skryabin S., Classification of Hamiltonian forms over divided power algebras, Math. USSR Sb. 69 (1991), 121-141.
- Skryabin S., A contragredient Lie algebra of dimension 29 over a field of characteristic 3, Sib. Math. J. 34 (1993), 548-554.
- Skryabin S., Toral rank one simple Lie algebras of low characteristics, J. Algebra 200 (1998), 650-700.
- Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, De Gruyter Expositions in Mathematics, Vol. 38, Walter de Gruyter & Co., Berlin, 2004.
- Tyurin S.A., The classification of deformations of a special Lie algebra of Cartan type, Math. Notes 24 (1988), 948-954.
- Weisfeiler B.Ju., Kac V.G., Exponentials in Lie algebras of characteristic $p$, Math. USSR Izv. 5 (1971), 777-803.
- Wilson R.L., Simple Lie algebras of type $S$, J. Algebra 62 (1980), 292-298.
- Yamaguchi K., Differential systems associated with simple graded Lie algebras, in Progress in Differential Geometry, Adv. Stud. Pure Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 413-494.
|
|