Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 088, 21 pages      arXiv:2005.02203      https://doi.org/10.3842/SIGMA.2020.088
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

Multidimensional Matrix Inversions and Elliptic Hypergeometric Series on Root Systems

Hjalmar Rosengren a and Michael J. Schlosser b
a) Department of Mathematics, Chalmers University of Technology and the University of Gothenburg, SE-412 96 Göteborg, Sweden
b) Fakultät für Mathematik der Universität Wien, Oskar Morgenstern-Platz 1, A-1090 Wien, Austria

Received May 06, 2020, in final form August 28, 2020; Published online September 24, 2020

Abstract
Multidimensional matrix inversions provide a powerful tool for studying multiple hypergeometric series. In order to extend this technique to elliptic hypergeometric series, we present three new multidimensional matrix inversions. As applications, we obtain a new $A_r$ elliptic Jackson summation, as well as several quadratic, cubic and quartic summation formulas.

Key words: elliptic hypergeometric series; hypergeometric series associated with root systems; multidimensional matrix inversion.

pdf (479 kb)   tex (27 kb)  

References

  1. Andrews G.E., Connection coefficient problems and partitions, in Relations between Combinatorics and other Parts of Mathematics (Ohio State University, Columbus, Ohio, 1978), Proc. Sympos. Pure Math., Vol. 34, Amer. Math. Soc., Providence, R.I., 1979, 1-24.
  2. Bhatnagar G., Inverse relations, generalized bibasic series, and the U(n) extensions, Ph.D. Thesis, The Ohio State University, 1995.
  3. Bhatnagar G., $D_n$ basic hypergeometric series, Ramanujan J. 3 (1999), 175-203.
  4. Bhatnagar G., Milne S.C., Generalized bibasic hypergeometric series and their ${\rm U}(n)$ extensions, Adv. Math. 131 (1997), 188-252.
  5. Bhatnagar G., Schlosser M.J., Elliptic well-poised Bailey transforms and lemmas on root systems, SIGMA 14 (2018), 025, 44 pages, arXiv:1704.00020.
  6. Brünner F., Spiridonov V.P., A duality web of linear quivers, Phys. Lett. B 761 (2016), 261-264, arXiv:1605.06991.
  7. Brünner F., Spiridonov V.P., 4d ${\mathcal N}=1$ quiver gauge theories and the $A_n$ Bailey lemma, J. High Energy Phys. 2018 (2018), no. 3, 105, 30 pages, arXiv:1712.07018.
  8. Buican M., Laczko Z., Nishinaka T., ${\mathcal N}=2$ $S$-duality revisited, J. High Energy Phys. 2017 (2017), no. 9, 087, 36 pages, arXiv:1706.03797.
  9. van de Bult F.J., Two multivariate quadratic transformations of elliptic hypergeometric integrals, arXiv:1109.1123.
  10. Chu W., Jia C., Quartic theta hypergeometric series, Ramanujan J. 32 (2013), 23-81.
  11. Coskun H., An elliptic $BC_n$ Bailey lemma, multiple Rogers-Ramanujan identities and Euler's pentagonal number theorems, Trans. Amer. Math. Soc. 360 (2008), 5397-5433.
  12. Coskun H., Gustafson R.A., Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$, in Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, Amer. Math. Soc., Providence, RI, 2006, 127-155, arXiv:math.CO/0412153.
  13. Date E., Jimbo M., Kuniba A., Miwa T., Okado M., Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities, in Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math., Vol. 16, Academic Press, Boston, MA, 1988, 17-122.
  14. Denis R.Y., Gustafson R.A., An ${\rm SU}(n)$ $q$-beta integral transformation and multiple hypergeometric series identities, SIAM J. Math. Anal. 23 (1992), 552-561.
  15. Frenkel I.B., Turaev V.G., Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions, in The Arnold-Gelfand mathematical seminars, Birkhäuser Boston, Boston, MA, 1997, 171-204.
  16. Gadde A., Rastelli L., Razamat S.S., Yan W., The superconformal index of the $E_6$ SCFT, J. High Energy Phys. 2010 (2010), no. 8, 107, 27 pages, arXiv:1003.4244.
  17. Gaiotto D., Kim H.-C., Duality walls and defects in 5d ${\mathcal N}=1$ theories, J. High Energy Phys. 2017 (2017), no. 1, 019, 57 pages, arXiv:1506.03871.
  18. Gasper G., Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc. 312 (1989), 257-277.
  19. Gasper G., Rahman M., An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas, Canad. J. Math. 42 (1990), 1-27.
  20. Gessel I., Stanton D., Applications of $q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173-201.
  21. Gustafson R.A., Multilateral summation theorems for ordinary and basic hypergeometric series in ${\rm U}(n)$, SIAM J. Math. Anal. 18 (1987), 1576-1596.
  22. Holman III W.J., Biedenharn L.C., Louck J.D., On hypergeometric series well-poised in ${\rm SU}(n)$, SIAM J. Math. Anal. 7 (1976), 529-541.
  23. Krattenthaler C., A new matrix inverse, Proc. Amer. Math. Soc. 124 (1996), 47-59.
  24. Krattenthaler C., Schlosser M.J., A new multidimensional matrix inverse with applications to multiple $q$-series, Discrete Math. 204 (1999), 249-279.
  25. Lassalle M., Schlosser M.J., Inversion of the Pieri formula for Macdonald polynomials, Adv. Math. 202 (2006), 289-325, arXiv:math.CO/0402127.
  26. Lassalle M., Schlosser M.J., Recurrence formulas for Macdonald polynomials of type $A$, J. Algebraic Combin. 32 (2010), 113-131, arXiv:0902.2099.
  27. Lee C., Rains E.M., Warnaar S.O., An elliptic hypergeometric function approach to branching rules, arXiv:2007.03174.
  28. Lilly G.M., Milne S.C., The $C_l$ Bailey transform and Bailey lemma, Constr. Approx. 9 (1993), 473-500.
  29. Macdonald I.G., Affine root systems and Dedekind's $\eta $-function, Invent. Math. 15 (1972), 91-143.
  30. Milne S.C., Balanced $_3\phi_2$ summation theorems for ${\rm U}(n)$ basic hypergeometric series, Adv. Math. 131 (1997), 93-187.
  31. Milne S.C., Lilly G.M., The $A_l$ and $C_l$ Bailey transform and lemma, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 258-263, arXiv:math.CA/9204236.
  32. Milne S.C., Lilly G.M., Consequences of the $A_l$ and $C_l$ Bailey transform and Bailey lemma, Discrete Math. 139 (1995), 319-346.
  33. Nazzal B., Razamat S.S., Surface defects in E-string compactifications and the van Diejen model, SIGMA 14 (2018), 036, 20 pages, arXiv:1801.00960.
  34. Rahman M., Some cubic summation formulas for basic hypergeometric series, Utilitas Math. 36 (1989), 161-172.
  35. Rahman M., Some quadratic and cubic summation formulas for basic hypergeometric series, Canad. J. Math. 45 (1993), 394-411.
  36. Rains E.M., $BC_n$-symmetric Abelian functions, Duke Math. J. 135 (2006), 99-180, arXiv:math.CO/0402113.
  37. Rains E.M., Transformations of elliptic hypergeometric integrals, Ann. of Math. 171 (2010), 169-243, arXiv:math.QA/0309252.
  38. Rains E.M., Elliptic Littlewood identities, J. Combin. Theory Ser. A 119 (2012), 1558-1609, arXiv:0806.0871.
  39. Rains E.M., Multivariate quadratic transformations and the interpolation kernel, SIGMA 14 (2018), 019, 69 pages, arXiv:1408.0305.
  40. Rosengren H., Elliptic hypergeometric series on root systems, Adv. Math. 181 (2004), 417-447, arXiv:math.CA/0207046.
  41. Rosengren H., Felder's elliptic quantum group and elliptic hypergeometric series on the root system $A_n$, Int. Math. Res. Not. 2011 (2011), 2861-2920, arXiv:1003.3730.
  42. Rosengren H., Gustafson-Rakha-type elliptic hypergeometric series, SIGMA 13 (2017), 037, 11 pages, arXiv:1701.08960.
  43. Rosengren H., Elliptic hypergeometric functions, in Lectures on Orthogonal Polynomials and Special Functions, Cambridge University Press, Cambridge,to appear, arXiv:1608.06161.
  44. Rosengren H., Schlosser M.J., On Warnaar's elliptic matrix inversion and Karlsson-Minton-type elliptic hypergeometric series, J. Comput. Appl. Math. 178 (2005), 377-391, arXiv:math.CA/0309358.
  45. Rosengren H., Warnaar S.O., Elliptic hypergeometric functions associated with root systems, in Encyclopedia of Special Functions: The Askey-Bateman Project, Vol. 2, Multivariable Special Functions, Cambridge University Press, Cambridge, 2020, 159-186, arXiv:1704.08406.
  46. Schlosser M.J., Multidimensional matrix inversions and $A_r$ and $D_r$ basic hypergeometric series, Ramanujan J. 1 (1997), 243-274.
  47. Schlosser M.J., Some new applications of matrix inversions in $A_r$, Ramanujan J. 3 (1999), 405-461.
  48. Schlosser M.J., A new multidimensional matrix inversion in $A_r$, in $q$-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math., Vol. 254, Amer. Math. Soc., Providence, RI, 2000, 413-432.
  49. Schlosser M.J., Macdonald polynomials and multivariable basic hypergeometric series, SIGMA 3 (2007), 056, 30 pages, arXiv:math.CO/0611639.
  50. Schlosser M.J., A new multivariable $_6\psi_6$ summation formula, Ramanujan J. 17 (2008), 305-319, arXiv:math.CA/0607122.
  51. Schlosser M.J., Multilateral inversion of $A_r$, $C_r$, and $D_r$ basic hypergeometric series, Ann. Comb. 13 (2009), 341-363, arXiv:math.CA/0608742.
  52. Schlosser M.J., Hypergeometric and basic hypergeometric series and integrals associated with root systems, in Encyclopedia of Special Functions: The Askey-Bateman Project, Vol. 2, Multivariable Special Functions, Cambridge University Press, Cambridge, 2020, 122-158, arXiv:1705.09221.
  53. Spiridonov V.P., Warnaar S.O., Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006), 91-132, arXiv:math.CA/0411044.
  54. Warnaar S.O., Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx. 18 (2002), 479-502, arXiv:math.QA/0001006.
  55. Yagi J., Surface defects and elliptic quantum groups, J. High Energy Phys. 2017 (2017), no. 6, 013, 32 pages, arXiv:1701.05562.

Previous article  Next article  Contents of Volume 16 (2020)